sw: first software commit
The software is untested, but it builds. Signed-off-by: Sean Cross <sean@xobs.io>
This commit is contained in:
91
sw/src/crt0-vexriscv.S
Normal file
91
sw/src/crt0-vexriscv.S
Normal file
@ -0,0 +1,91 @@
|
||||
.global main
|
||||
.global isr
|
||||
|
||||
.section .text.start
|
||||
.global _start
|
||||
|
||||
_start:
|
||||
j crt_init
|
||||
nop
|
||||
nop
|
||||
nop
|
||||
nop
|
||||
nop
|
||||
nop
|
||||
nop
|
||||
|
||||
.section .text
|
||||
.global trap_entry
|
||||
trap_entry:
|
||||
sw x1, - 1*4(sp)
|
||||
sw x5, - 2*4(sp)
|
||||
sw x6, - 3*4(sp)
|
||||
sw x7, - 4*4(sp)
|
||||
sw x10, - 5*4(sp)
|
||||
sw x11, - 6*4(sp)
|
||||
sw x12, - 7*4(sp)
|
||||
sw x13, - 8*4(sp)
|
||||
sw x14, - 9*4(sp)
|
||||
sw x15, -10*4(sp)
|
||||
sw x16, -11*4(sp)
|
||||
sw x17, -12*4(sp)
|
||||
sw x28, -13*4(sp)
|
||||
sw x29, -14*4(sp)
|
||||
sw x30, -15*4(sp)
|
||||
sw x31, -16*4(sp)
|
||||
addi sp,sp,-16*4
|
||||
call isr
|
||||
lw x1 , 15*4(sp)
|
||||
lw x5, 14*4(sp)
|
||||
lw x6, 13*4(sp)
|
||||
lw x7, 12*4(sp)
|
||||
lw x10, 11*4(sp)
|
||||
lw x11, 10*4(sp)
|
||||
lw x12, 9*4(sp)
|
||||
lw x13, 8*4(sp)
|
||||
lw x14, 7*4(sp)
|
||||
lw x15, 6*4(sp)
|
||||
lw x16, 5*4(sp)
|
||||
lw x17, 4*4(sp)
|
||||
lw x28, 3*4(sp)
|
||||
lw x29, 2*4(sp)
|
||||
lw x30, 1*4(sp)
|
||||
lw x31, 0*4(sp)
|
||||
addi sp,sp,16*4
|
||||
mret
|
||||
.text
|
||||
|
||||
|
||||
crt_init:
|
||||
la sp, _fstack + 4
|
||||
la a0, trap_entry
|
||||
csrw mtvec, a0
|
||||
|
||||
bss_init:
|
||||
la a0, _fbss
|
||||
la a1, _ebss
|
||||
bss_loop:
|
||||
beq a0,a1,bss_done
|
||||
sw zero,0(a0)
|
||||
add a0,a0,4
|
||||
j bss_loop
|
||||
bss_done:
|
||||
|
||||
/* Load DATA */
|
||||
la t0, _erodata
|
||||
la t1, _fdata
|
||||
la t2, _edata
|
||||
3:
|
||||
lw t3, 0(t0)
|
||||
sw t3, 0(t1)
|
||||
/* _edata is aligned to 16 bytes. Use word-xfers. */
|
||||
addi t0, t0, 4
|
||||
addi t1, t1, 4
|
||||
bltu t1, t2, 3b
|
||||
|
||||
li a0, 0x880 //880 enable timer + external interrupt sources (until mstatus.MIE is set, they will never trigger an interrupt)
|
||||
csrw mie,a0
|
||||
|
||||
call main
|
||||
infinit_loop:
|
||||
j infinit_loop
|
46
sw/src/main.c
Normal file
46
sw/src/main.c
Normal file
@ -0,0 +1,46 @@
|
||||
#include <stdio.h>
|
||||
#include <irq.h>
|
||||
#include <usb.h>
|
||||
#include <time.h>
|
||||
#include <rgb.h>
|
||||
#include <spi.h>
|
||||
#include <fomu/csr.h>
|
||||
|
||||
struct ff_spi *spi;
|
||||
|
||||
void isr(void)
|
||||
{
|
||||
unsigned int irqs;
|
||||
|
||||
irqs = irq_pending() & irq_getmask();
|
||||
|
||||
if (irqs & (1 << USB_INTERRUPT))
|
||||
usb_isr();
|
||||
}
|
||||
|
||||
static void init(void)
|
||||
{
|
||||
rgb_init();
|
||||
spi = spiAlloc();
|
||||
spiInit(spi);
|
||||
irq_setmask(0);
|
||||
irq_setie(1);
|
||||
usb_init();
|
||||
time_init();
|
||||
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
(void)argc;
|
||||
(void)argv;
|
||||
|
||||
init();
|
||||
|
||||
usb_connect();
|
||||
while (1)
|
||||
{
|
||||
usb_poll();
|
||||
}
|
||||
return 0;
|
||||
}
|
89
sw/src/rgb.c
Normal file
89
sw/src/rgb.c
Normal file
@ -0,0 +1,89 @@
|
||||
#include <rgb.h>
|
||||
#include <fomu/csr.h>
|
||||
|
||||
enum led_registers {
|
||||
LEDDCR0 = 8,
|
||||
LEDDBR = 9,
|
||||
LEDDONR = 10,
|
||||
LEDDOFR = 11,
|
||||
LEDDBCRR = 5,
|
||||
LEDDBCFR = 6,
|
||||
LEDDPWRR = 1,
|
||||
LEDDPWRG = 2,
|
||||
LEDDPWRB = 3,
|
||||
};
|
||||
|
||||
#define BREATHE_ENABLE (1 << 7)
|
||||
#define BREATHE_EDGE_ON (0 << 6)
|
||||
#define BREATHE_EDGE_BOTH (1 << 6)
|
||||
#define BREATHE_MODE_MODULATE (1 << 5)
|
||||
#define BREATHE_RATE(x) ((x & 7) << 0)
|
||||
|
||||
#define RGB_SWITCH_MODE(x) do { \
|
||||
if (rgb_mode == x) \
|
||||
return; \
|
||||
rgb_mode = x; \
|
||||
/* Toggle LEDD_EXE to force the mode to switch */ \
|
||||
rgb_ctrl_write( (1 << 1) | (1 << 2)); \
|
||||
rgb_ctrl_write((1 << 0) | (1 << 1) | (1 << 2)); \
|
||||
} while(0)
|
||||
|
||||
static enum {
|
||||
INVALID = 0,
|
||||
IDLE,
|
||||
WRITING,
|
||||
ERROR,
|
||||
DONE,
|
||||
} rgb_mode;
|
||||
|
||||
static void rgb_write(uint8_t value, uint8_t addr) {
|
||||
rgb_addr_write(addr);
|
||||
rgb_dat_write(value);
|
||||
}
|
||||
|
||||
void rgb_init(void) {
|
||||
// Turn on the RGB block and current enable, as well as enabling led control
|
||||
rgb_ctrl_write((1 << 0) | (1 << 1) | (1 << 2));
|
||||
|
||||
// Enable the LED driver, and set 250 Hz mode.
|
||||
// Also set quick stop, which we'll use to switch patterns quickly.
|
||||
rgb_write((1 << 7) | (1 << 6) | (1 << 3), LEDDCR0);
|
||||
|
||||
// Set clock register to 12 MHz / 64 kHz - 1
|
||||
rgb_write((12000000/64000)-1, LEDDBR);
|
||||
|
||||
rgb_mode_idle();
|
||||
}
|
||||
|
||||
static void rgb_switch_mode(uint8_t mode,
|
||||
uint8_t onr, uint8_t ofr,
|
||||
uint8_t onrate, uint8_t offrate,
|
||||
uint8_t r, uint8_t g, uint8_t b) {
|
||||
RGB_SWITCH_MODE(mode);
|
||||
rgb_write(onr, LEDDONR);
|
||||
rgb_write(ofr, LEDDOFR);
|
||||
|
||||
rgb_write(BREATHE_ENABLE | BREATHE_EDGE_BOTH
|
||||
| BREATHE_MODE_MODULATE | BREATHE_RATE(onrate), LEDDBCRR);
|
||||
rgb_write(BREATHE_ENABLE | BREATHE_MODE_MODULATE | BREATHE_RATE(offrate), LEDDBCFR);
|
||||
|
||||
rgb_write(r, LEDDPWRG); // Red
|
||||
rgb_write(g, LEDDPWRB); // Green
|
||||
rgb_write(b, LEDDPWRR); // Blue
|
||||
}
|
||||
|
||||
void rgb_mode_idle(void) {
|
||||
rgb_switch_mode(IDLE, 12, 14, 2, 3, 0x00/4, 0x4a/4, 0xe1/4);
|
||||
}
|
||||
|
||||
void rgb_mode_writing(void) {
|
||||
rgb_switch_mode(WRITING, 1, 2, 1, 3, 0x00/4, 0x7a/4, 0x51/4);
|
||||
}
|
||||
|
||||
void rgb_mode_error(void) {
|
||||
rgb_switch_mode(ERROR, 3, 3, 2, 3, 0xf0/4, 0x0a/4, 0x01/4);
|
||||
}
|
||||
|
||||
void rgb_mode_done(void) {
|
||||
rgb_switch_mode(DONE, 8, 8, 2, 3, 0x14/4, 0xff/4, 0x44/4);
|
||||
}
|
824
sw/src/spi.c
Normal file
824
sw/src/spi.c
Normal file
@ -0,0 +1,824 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <fomu/csr.h>
|
||||
|
||||
#include "spi.h"
|
||||
|
||||
#define fprintf(...) do {} while(0)
|
||||
|
||||
static uint8_t do_mirror;
|
||||
static uint8_t oe_mirror;
|
||||
|
||||
#define PI_OUTPUT 1
|
||||
#define PI_INPUT 0
|
||||
#define PI_ALT0 PI_INPUT
|
||||
static void gpioSetMode(int pin, int mode) {
|
||||
if (mode)
|
||||
oe_mirror |= 1 << pin;
|
||||
else
|
||||
oe_mirror &= ~(1 << pin);
|
||||
picorvspi_cfg2_write(oe_mirror);
|
||||
}
|
||||
|
||||
static void gpioWrite(int pin, int val) {
|
||||
if (val)
|
||||
do_mirror |= 1 << pin;
|
||||
else
|
||||
do_mirror &= ~(1 << pin);
|
||||
picorvspi_cfg1_write(do_mirror);
|
||||
}
|
||||
|
||||
static int gpioRead(int pin) {
|
||||
return !!(picorvspi_stat1_read() & (1 << pin));
|
||||
}
|
||||
|
||||
static void gpioSync(void) {
|
||||
// bbspi_do_write(do_mirror);
|
||||
}
|
||||
|
||||
#define SPI_ONLY_SINGLE
|
||||
|
||||
enum ff_spi_quirks {
|
||||
// There is no separate "Write SR 2" command. Instead,
|
||||
// you must write SR2 after writing SR1
|
||||
SQ_SR2_FROM_SR1 = (1 << 0),
|
||||
|
||||
// Don't issue a "Write Enable" command prior to writing
|
||||
// a status register
|
||||
SQ_SKIP_SR_WEL = (1 << 1),
|
||||
|
||||
// Security registers are shifted up by 4 bits
|
||||
SQ_SECURITY_NYBBLE_SHIFT = (1 << 2),
|
||||
};
|
||||
|
||||
struct ff_spi {
|
||||
enum spi_state state;
|
||||
enum spi_type type;
|
||||
enum spi_type desired_type;
|
||||
struct spi_id id;
|
||||
enum ff_spi_quirks quirks;
|
||||
int size_override;
|
||||
|
||||
struct {
|
||||
int clk;
|
||||
int d0;
|
||||
int d1;
|
||||
int d2;
|
||||
int d3;
|
||||
int wp;
|
||||
int hold;
|
||||
int cs;
|
||||
int miso;
|
||||
int mosi;
|
||||
} pins;
|
||||
};
|
||||
|
||||
static void spi_get_id(struct ff_spi *spi);
|
||||
|
||||
static void spi_set_state(struct ff_spi *spi, enum spi_state state) {
|
||||
return;
|
||||
if (spi->state == state)
|
||||
return;
|
||||
#ifndef SPI_ONLY_SINGLE
|
||||
switch (state) {
|
||||
case SS_SINGLE:
|
||||
#endif
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
#ifndef SPI_ONLY_SINGLE
|
||||
break;
|
||||
|
||||
case SS_DUAL_RX:
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
break;
|
||||
|
||||
case SS_DUAL_TX:
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
break;
|
||||
|
||||
case SS_QUAD_RX:
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_INPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_INPUT);
|
||||
break;
|
||||
|
||||
case SS_QUAD_TX:
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
break;
|
||||
|
||||
case SS_HARDWARE:
|
||||
gpioSetMode(spi->pins.clk, PI_ALT0); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_ALT0); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_ALT0); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_ALT0); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "Unrecognized spi state\n");
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
spi->state = state;
|
||||
}
|
||||
|
||||
void spiPause(struct ff_spi *spi) {
|
||||
(void)spi;
|
||||
gpioSync();
|
||||
// usleep(1);
|
||||
return;
|
||||
}
|
||||
|
||||
void spiBegin(struct ff_spi *spi) {
|
||||
spi_set_state(spi, SS_SINGLE);
|
||||
if ((spi->type == ST_SINGLE) || (spi->type == ST_DUAL)) {
|
||||
gpioWrite(spi->pins.wp, 1);
|
||||
gpioWrite(spi->pins.hold, 1);
|
||||
}
|
||||
gpioWrite(spi->pins.cs, 0);
|
||||
}
|
||||
|
||||
void spiEnd(struct ff_spi *spi) {
|
||||
(void)spi;
|
||||
gpioWrite(spi->pins.cs, 1);
|
||||
}
|
||||
|
||||
static uint8_t spiXfer(struct ff_spi *spi, uint8_t out) {
|
||||
int bit;
|
||||
uint8_t in = 0;
|
||||
|
||||
for (bit = 7; bit >= 0; bit--) {
|
||||
if (out & (1 << bit)) {
|
||||
gpioWrite(spi->pins.mosi, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.mosi, 0);
|
||||
}
|
||||
gpioWrite(spi->pins.clk, 1);
|
||||
spiPause(spi);
|
||||
in |= ((!!gpioRead(spi->pins.miso)) << bit);
|
||||
gpioWrite(spi->pins.clk, 0);
|
||||
spiPause(spi);
|
||||
}
|
||||
|
||||
return in;
|
||||
}
|
||||
|
||||
static void spiSingleTx(struct ff_spi *spi, uint8_t out) {
|
||||
spi_set_state(spi, SS_SINGLE);
|
||||
spiXfer(spi, out);
|
||||
}
|
||||
|
||||
static uint8_t spiSingleRx(struct ff_spi *spi) {
|
||||
spi_set_state(spi, SS_SINGLE);
|
||||
return spiXfer(spi, 0xff);
|
||||
}
|
||||
|
||||
static void spiDualTx(struct ff_spi *spi, uint8_t out) {
|
||||
|
||||
int bit;
|
||||
spi_set_state(spi, SS_DUAL_TX);
|
||||
for (bit = 7; bit >= 0; bit -= 2) {
|
||||
if (out & (1 << (bit - 1))) {
|
||||
gpioWrite(spi->pins.d0, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d0, 0);
|
||||
}
|
||||
|
||||
if (out & (1 << (bit - 0))) {
|
||||
gpioWrite(spi->pins.d1, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d1, 0);
|
||||
}
|
||||
gpioWrite(spi->pins.clk, 1);
|
||||
spiPause(spi);
|
||||
gpioWrite(spi->pins.clk, 0);
|
||||
spiPause(spi);
|
||||
}
|
||||
}
|
||||
|
||||
static void spiQuadTx(struct ff_spi *spi, uint8_t out) {
|
||||
int bit;
|
||||
spi_set_state(spi, SS_QUAD_TX);
|
||||
for (bit = 7; bit >= 0; bit -= 4) {
|
||||
if (out & (1 << (bit - 3))) {
|
||||
gpioWrite(spi->pins.d0, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d0, 0);
|
||||
}
|
||||
|
||||
if (out & (1 << (bit - 2))) {
|
||||
gpioWrite(spi->pins.d1, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d1, 0);
|
||||
}
|
||||
|
||||
if (out & (1 << (bit - 1))) {
|
||||
gpioWrite(spi->pins.d2, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d2, 0);
|
||||
}
|
||||
|
||||
if (out & (1 << (bit - 0))) {
|
||||
gpioWrite(spi->pins.d3, 1);
|
||||
}
|
||||
else {
|
||||
gpioWrite(spi->pins.d3, 0);
|
||||
}
|
||||
gpioWrite(spi->pins.clk, 1);
|
||||
spiPause(spi);
|
||||
gpioWrite(spi->pins.clk, 0);
|
||||
spiPause(spi);
|
||||
}
|
||||
}
|
||||
|
||||
static uint8_t spiDualRx(struct ff_spi *spi) {
|
||||
int bit;
|
||||
uint8_t in = 0;
|
||||
|
||||
spi_set_state(spi, SS_QUAD_RX);
|
||||
for (bit = 7; bit >= 0; bit -= 2) {
|
||||
gpioWrite(spi->pins.clk, 1);
|
||||
spiPause(spi);
|
||||
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 1));
|
||||
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 0));
|
||||
gpioWrite(spi->pins.clk, 0);
|
||||
spiPause(spi);
|
||||
}
|
||||
return in;
|
||||
}
|
||||
|
||||
static uint8_t spiQuadRx(struct ff_spi *spi) {
|
||||
int bit;
|
||||
uint8_t in = 0;
|
||||
|
||||
spi_set_state(spi, SS_QUAD_RX);
|
||||
for (bit = 7; bit >= 0; bit -= 4) {
|
||||
gpioWrite(spi->pins.clk, 1);
|
||||
spiPause(spi);
|
||||
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 3));
|
||||
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 2));
|
||||
in |= ((!!gpioRead(spi->pins.d2)) << (bit - 1));
|
||||
in |= ((!!gpioRead(spi->pins.d3)) << (bit - 0));
|
||||
gpioWrite(spi->pins.clk, 0);
|
||||
spiPause(spi);
|
||||
}
|
||||
return in;
|
||||
}
|
||||
|
||||
int spiTx(struct ff_spi *spi, uint8_t word) {
|
||||
switch (spi->type) {
|
||||
case ST_SINGLE:
|
||||
spiSingleTx(spi, word);
|
||||
break;
|
||||
case ST_DUAL:
|
||||
spiDualTx(spi, word);
|
||||
break;
|
||||
case ST_QUAD:
|
||||
case ST_QPI:
|
||||
spiQuadTx(spi, word);
|
||||
break;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t spiRx(struct ff_spi *spi) {
|
||||
switch (spi->type) {
|
||||
case ST_SINGLE:
|
||||
return spiSingleRx(spi);
|
||||
case ST_DUAL:
|
||||
return spiDualRx(spi);
|
||||
case ST_QUAD:
|
||||
case ST_QPI:
|
||||
return spiQuadRx(spi);
|
||||
default:
|
||||
return 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
void spiCommand(struct ff_spi *spi, uint8_t cmd) {
|
||||
if (spi->type == ST_QPI)
|
||||
spiQuadTx(spi, cmd);
|
||||
else
|
||||
spiSingleTx(spi, cmd);
|
||||
}
|
||||
|
||||
uint8_t spiCommandRx(struct ff_spi *spi) {
|
||||
if (spi->type == ST_QPI)
|
||||
return spiQuadRx(spi);
|
||||
else
|
||||
return spiSingleRx(spi);
|
||||
}
|
||||
|
||||
uint8_t spiReadStatus(struct ff_spi *spi, uint8_t sr) {
|
||||
uint8_t val = 0xff;
|
||||
(void)sr;
|
||||
|
||||
#if 0
|
||||
switch (sr) {
|
||||
case 1:
|
||||
#endif
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x05);
|
||||
val = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
#if 0
|
||||
break;
|
||||
|
||||
case 2:
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x35);
|
||||
val = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
break;
|
||||
|
||||
case 3:
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x15);
|
||||
val = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "unrecognized status register: %d\n", sr);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
return val;
|
||||
}
|
||||
|
||||
void spiWriteSecurity(struct ff_spi *spi, uint8_t sr, uint8_t security[256]) {
|
||||
|
||||
if (spi->quirks & SQ_SECURITY_NYBBLE_SHIFT)
|
||||
sr <<= 4;
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
|
||||
// erase the register
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x44);
|
||||
spiCommand(spi, 0x00); // A23-16
|
||||
spiCommand(spi, sr); // A15-8
|
||||
spiCommand(spi, 0x00); // A0-7
|
||||
spiEnd(spi);
|
||||
|
||||
spi_get_id(spi);
|
||||
sleep(1);
|
||||
|
||||
// write enable
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x42);
|
||||
spiCommand(spi, 0x00); // A23-16
|
||||
spiCommand(spi, sr); // A15-8
|
||||
spiCommand(spi, 0x00); // A0-7
|
||||
int i;
|
||||
for (i = 0; i < 256; i++)
|
||||
spiCommand(spi, security[i]);
|
||||
spiEnd(spi);
|
||||
|
||||
spi_get_id(spi);
|
||||
}
|
||||
|
||||
void spiReadSecurity(struct ff_spi *spi, uint8_t sr, uint8_t security[256]) {
|
||||
if (spi->quirks & SQ_SECURITY_NYBBLE_SHIFT)
|
||||
sr <<= 4;
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x48); // Read security registers
|
||||
spiCommand(spi, 0x00); // A23-16
|
||||
spiCommand(spi, sr); // A15-8
|
||||
spiCommand(spi, 0x00); // A0-7
|
||||
int i;
|
||||
for (i = 0; i < 256; i++)
|
||||
security[i] = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
void spiWriteStatus(struct ff_spi *spi, uint8_t sr, uint8_t val) {
|
||||
|
||||
switch (sr) {
|
||||
case 1:
|
||||
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x50);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x01);
|
||||
spiCommand(spi, val);
|
||||
spiEnd(spi);
|
||||
break;
|
||||
|
||||
case 2: {
|
||||
uint8_t sr1 = 0x00;
|
||||
if (spi->quirks & SQ_SR2_FROM_SR1)
|
||||
sr1 = spiReadStatus(spi, 1);
|
||||
|
||||
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x50);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
if (spi->quirks & SQ_SR2_FROM_SR1) {
|
||||
spiCommand(spi, 0x01);
|
||||
spiCommand(spi, sr1);
|
||||
spiCommand(spi, val);
|
||||
}
|
||||
else {
|
||||
spiCommand(spi, 0x31);
|
||||
spiCommand(spi, val);
|
||||
}
|
||||
spiEnd(spi);
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x50);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x11);
|
||||
spiCommand(spi, val);
|
||||
spiEnd(spi);
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "unrecognized status register: %d\n", sr);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
struct spi_id spiId(struct ff_spi *spi) {
|
||||
return spi->id;
|
||||
}
|
||||
|
||||
static void spi_decode_id(struct ff_spi *spi) {
|
||||
spi->id.bytes = -1; // unknown
|
||||
|
||||
if (spi->id.manufacturer_id == 0xef) {
|
||||
// spi->id.manufacturer = "Winbond";
|
||||
if ((spi->id.memory_type == 0x70)
|
||||
&& (spi->id.memory_size == 0x18)) {
|
||||
// spi->id.model = "W25Q128JV";
|
||||
// spi->id.capacity = "128 Mbit";
|
||||
spi->id.bytes = 16 * 1024 * 1024;
|
||||
}
|
||||
}
|
||||
|
||||
if (spi->id.manufacturer_id == 0x1f) {
|
||||
// spi->id.manufacturer = "Adesto";
|
||||
if ((spi->id.memory_type == 0x86)
|
||||
&& (spi->id.memory_size == 0x01)) {
|
||||
// spi->id.model = "AT25SF161";
|
||||
// spi->id.capacity = "16 Mbit";
|
||||
spi->id.bytes = 1 * 1024 * 1024;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
static void spi_get_id(struct ff_spi *spi) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x90); // Read manufacturer ID
|
||||
spiCommand(spi, 0x00); // Dummy byte 1
|
||||
spiCommand(spi, 0x00); // Dummy byte 2
|
||||
spiCommand(spi, 0x00); // Dummy byte 3
|
||||
spi->id.manufacturer_id = spiCommandRx(spi);
|
||||
spi->id.device_id = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
return;
|
||||
#if 0
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x9f); // Read device id
|
||||
spi->id._manufacturer_id = spiCommandRx(spi);
|
||||
spi->id.memory_type = spiCommandRx(spi);
|
||||
spi->id.memory_size = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xab); // Read electronic signature
|
||||
spiCommand(spi, 0x00); // Dummy byte 1
|
||||
spiCommand(spi, 0x00); // Dummy byte 2
|
||||
spiCommand(spi, 0x00); // Dummy byte 3
|
||||
spi->id.signature = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x4b); // Read unique ID
|
||||
spiCommand(spi, 0x00); // Dummy byte 1
|
||||
spiCommand(spi, 0x00); // Dummy byte 2
|
||||
spiCommand(spi, 0x00); // Dummy byte 3
|
||||
spiCommand(spi, 0x00); // Dummy byte 4
|
||||
spi->id.serial[0] = spiCommandRx(spi);
|
||||
spi->id.serial[1] = spiCommandRx(spi);
|
||||
spi->id.serial[2] = spiCommandRx(spi);
|
||||
spi->id.serial[3] = spiCommandRx(spi);
|
||||
spiEnd(spi);
|
||||
|
||||
spi_decode_id(spi);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if 0
|
||||
void spiOverrideSize(struct ff_spi *spi, uint32_t size) {
|
||||
spi->size_override = size;
|
||||
|
||||
// If size is 0, re-read the capacity
|
||||
if (!size)
|
||||
spi_decode_id(spi);
|
||||
else
|
||||
spi->id.bytes = size;
|
||||
}
|
||||
#endif
|
||||
|
||||
int spiSetType(struct ff_spi *spi, enum spi_type type) {
|
||||
|
||||
if (spi->type == type)
|
||||
return 0;
|
||||
|
||||
#ifndef SPI_ONLY_SINGLE
|
||||
switch (type) {
|
||||
|
||||
case ST_SINGLE:
|
||||
#endif
|
||||
if (spi->type == ST_QPI) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xff); // Exit QPI Mode
|
||||
spiEnd(spi);
|
||||
}
|
||||
spi->type = type;
|
||||
spi_set_state(spi, SS_SINGLE);
|
||||
#ifndef SPI_ONLY_SINGLE
|
||||
break;
|
||||
|
||||
case ST_DUAL:
|
||||
if (spi->type == ST_QPI) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xff); // Exit QPI Mode
|
||||
spiEnd(spi);
|
||||
}
|
||||
spi->type = type;
|
||||
spi_set_state(spi, SS_DUAL_TX);
|
||||
break;
|
||||
|
||||
case ST_QUAD:
|
||||
if (spi->type == ST_QPI) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xff); // Exit QPI Mode
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
// Enable QE bit
|
||||
spiWriteStatus(spi, 2, spiReadStatus(spi, 2) | (1 << 1));
|
||||
|
||||
spi->type = type;
|
||||
spi_set_state(spi, SS_QUAD_TX);
|
||||
break;
|
||||
|
||||
case ST_QPI:
|
||||
// Enable QE bit
|
||||
spiWriteStatus(spi, 2, spiReadStatus(spi, 2) | (1 << 1));
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x38); // Enter QPI Mode
|
||||
spiEnd(spi);
|
||||
spi->type = type;
|
||||
spi_set_state(spi, SS_QUAD_TX);
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "Unrecognized SPI type: %d\n", type);
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
int spiIsBusy(struct ff_spi *spi) {
|
||||
return spiReadStatus(spi, 1) & (1 << 0);
|
||||
}
|
||||
|
||||
int spiBeginErase32(struct ff_spi *spi, uint32_t erase_addr) {
|
||||
// Enable Write-Enable Latch (WEL)
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x52);
|
||||
spiCommand(spi, erase_addr >> 16);
|
||||
spiCommand(spi, erase_addr >> 8);
|
||||
spiCommand(spi, erase_addr >> 0);
|
||||
spiEnd(spi);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int spiBeginErase64(struct ff_spi *spi, uint32_t erase_addr) {
|
||||
// Enable Write-Enable Latch (WEL)
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xD8);
|
||||
spiCommand(spi, erase_addr >> 16);
|
||||
spiCommand(spi, erase_addr >> 8);
|
||||
spiCommand(spi, erase_addr >> 0);
|
||||
spiEnd(spi);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int spiBeginWrite(struct ff_spi *spi, uint32_t addr, const void *v_data, unsigned int count) {
|
||||
const uint8_t write_cmd = 0x02;
|
||||
const uint8_t *data = v_data;
|
||||
unsigned int i;
|
||||
|
||||
// Enable Write-Enable Latch (WEL)
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x06);
|
||||
spiEnd(spi);
|
||||
|
||||
// uint8_t sr1 = spiReadStatus(spi, 1);
|
||||
// if (!(sr1 & (1 << 1)))
|
||||
// fprintf(stderr, "error: write-enable latch (WEL) not set, write will probably fail\n");
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, write_cmd);
|
||||
spiCommand(spi, addr >> 16);
|
||||
spiCommand(spi, addr >> 8);
|
||||
spiCommand(spi, addr >> 0);
|
||||
for (i = 0; (i < count) && (i < 256); i++)
|
||||
spiTx(spi, *data++);
|
||||
spiEnd(spi);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t spiReset(struct ff_spi *spi) {
|
||||
// XXX You should check the "Ready" bit before doing this!
|
||||
|
||||
// Shift to QPI mode, then back to Single mode, to ensure
|
||||
// we're actually in Single mode.
|
||||
spiSetType(spi, ST_QPI);
|
||||
spiSetType(spi, ST_SINGLE);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x66); // "Enable Reset" command
|
||||
spiEnd(spi);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0x99); // "Reset Device" command
|
||||
spiEnd(spi);
|
||||
|
||||
// msleep(30);
|
||||
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xab); // "Resume from Deep Power-Down" command
|
||||
spiEnd(spi);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int spiInit(struct ff_spi *spi) {
|
||||
spi->state = SS_UNCONFIGURED;
|
||||
spi->type = ST_UNCONFIGURED;
|
||||
|
||||
// Disable memory-mapped mode and enable bit-bang mode
|
||||
picorvspi_cfg4_write(0);
|
||||
|
||||
// Reset the SPI flash, which will return it to SPI mode even
|
||||
// if it's in QPI mode.
|
||||
spiReset(spi);
|
||||
|
||||
spiSetType(spi, ST_SINGLE);
|
||||
|
||||
// Have the SPI flash pay attention to us
|
||||
gpioWrite(spi->pins.hold, 1);
|
||||
|
||||
// Disable WP
|
||||
gpioWrite(spi->pins.wp, 1);
|
||||
|
||||
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
||||
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
||||
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
||||
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
||||
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
||||
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
||||
|
||||
spi_get_id(spi);
|
||||
|
||||
spi->quirks |= SQ_SR2_FROM_SR1;
|
||||
if (spi->id.manufacturer_id == 0xef)
|
||||
spi->quirks |= SQ_SKIP_SR_WEL | SQ_SECURITY_NYBBLE_SHIFT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void spiEnableQuad(void) {
|
||||
struct ff_spi *spi = spiAlloc();
|
||||
spiInit(spi);
|
||||
spiWriteStatus(spi, 2, spiReadStatus(spi, 2) | (1 << 1));
|
||||
spiFree();
|
||||
}
|
||||
|
||||
struct ff_spi *spiAlloc(void) {
|
||||
static struct ff_spi spi;
|
||||
return &spi;
|
||||
}
|
||||
|
||||
void spiSetPin(struct ff_spi *spi, enum spi_pin pin, int val) {
|
||||
switch (pin) {
|
||||
case SP_MOSI: spi->pins.mosi = val; break;
|
||||
case SP_MISO: spi->pins.miso = val; break;
|
||||
case SP_HOLD: spi->pins.hold = val; break;
|
||||
case SP_WP: spi->pins.wp = val; break;
|
||||
case SP_CS: spi->pins.cs = val; break;
|
||||
case SP_CLK: spi->pins.clk = val; break;
|
||||
case SP_D0: spi->pins.d0 = val; break;
|
||||
case SP_D1: spi->pins.d1 = val; break;
|
||||
case SP_D2: spi->pins.d2 = val; break;
|
||||
case SP_D3: spi->pins.d3 = val; break;
|
||||
default: fprintf(stderr, "unrecognized pin: %d\n", pin); break;
|
||||
}
|
||||
}
|
||||
|
||||
void spiHold(struct ff_spi *spi) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xb9);
|
||||
spiEnd(spi);
|
||||
}
|
||||
void spiUnhold(struct ff_spi *spi) {
|
||||
spiBegin(spi);
|
||||
spiCommand(spi, 0xab);
|
||||
spiEnd(spi);
|
||||
}
|
||||
|
||||
void spiFree(void) {
|
||||
// Re-enable memory-mapped mode
|
||||
picorvspi_cfg4_write(0x80);
|
||||
}
|
43
sw/src/time.c
Normal file
43
sw/src/time.c
Normal file
@ -0,0 +1,43 @@
|
||||
#include <fomu/csr.h>
|
||||
#include <time.h>
|
||||
|
||||
void time_init(void)
|
||||
{
|
||||
int t;
|
||||
|
||||
timer0_en_write(0);
|
||||
t = 2*SYSTEM_CLOCK_FREQUENCY;
|
||||
timer0_reload_write(t);
|
||||
timer0_load_write(t);
|
||||
timer0_en_write(1);
|
||||
}
|
||||
|
||||
int elapsed(int *last_event, int period)
|
||||
{
|
||||
int t, dt;
|
||||
|
||||
timer0_update_value_write(1);
|
||||
t = timer0_reload_read() - timer0_value_read();
|
||||
if(period < 0) {
|
||||
*last_event = t;
|
||||
return 1;
|
||||
}
|
||||
dt = t - *last_event;
|
||||
if(dt < 0)
|
||||
dt += timer0_reload_read();
|
||||
if((dt > period) || (dt < 0)) {
|
||||
*last_event = t;
|
||||
return 1;
|
||||
} else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void msleep(int ms)
|
||||
{
|
||||
timer0_en_write(0);
|
||||
timer0_reload_write(0);
|
||||
timer0_load_write(SYSTEM_CLOCK_FREQUENCY/1000*ms);
|
||||
timer0_en_write(1);
|
||||
timer0_update_value_write(1);
|
||||
while(timer0_value_read()) timer0_update_value_write(1);
|
||||
}
|
220
sw/src/usb-desc.c
Normal file
220
sw/src/usb-desc.c
Normal file
@ -0,0 +1,220 @@
|
||||
/* Teensyduino Core Library
|
||||
* http://www.pjrc.com/teensy/
|
||||
* Copyright (c) 2013 PJRC.COM, LLC.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* 1. The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* 2. If the Software is incorporated into a build system that allows
|
||||
* selection among a list of target devices, then similar target
|
||||
* devices manufactured by PJRC.COM must be included in the list of
|
||||
* target devices and selectable in the same manner.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <usb-desc.h>
|
||||
#include <usb-cdc.h>
|
||||
|
||||
// USB Descriptors are binary data which the USB host reads to
|
||||
// automatically detect a USB device's capabilities. The format
|
||||
// and meaning of every field is documented in numerous USB
|
||||
// standards. When working with USB descriptors, despite the
|
||||
// complexity of the standards and poor writing quality in many
|
||||
// of those documents, remember descriptors are nothing more
|
||||
// than constant binary data that tells the USB host what the
|
||||
// device can do. Computers will load drivers based on this data.
|
||||
// Those drivers then communicate on the endpoints specified by
|
||||
// the descriptors.
|
||||
|
||||
// To configure a new combination of interfaces or make minor
|
||||
// changes to existing configuration (eg, change the name or ID
|
||||
// numbers), usually you would edit "usb_desc.h". This file
|
||||
// is meant to be configured by the header, so generally it is
|
||||
// only edited to add completely new USB interfaces or features.
|
||||
|
||||
// **************************************************************
|
||||
// USB Device
|
||||
// **************************************************************
|
||||
|
||||
#define LSB(n) ((n) & 255)
|
||||
#define MSB(n) (((n) >> 8) & 255)
|
||||
|
||||
// USB Device Descriptor. The USB host reads this first, to learn
|
||||
// what type of device is connected.
|
||||
static const uint8_t device_descriptor[] = {
|
||||
18, // bLength
|
||||
1, // bDescriptorType
|
||||
0x01, 0x02, // bcdUSB
|
||||
USB_CLASS_CDC, // bDeviceClass
|
||||
0x00, // bDeviceSubClass
|
||||
0x00, // bDeviceProtocol
|
||||
EP0_SIZE, // bMaxPacketSize0
|
||||
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
|
||||
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
|
||||
LSB(DEVICE_VER), MSB(DEVICE_VER), // bcdDevice
|
||||
1, // iManufacturer
|
||||
2, // iProduct
|
||||
0, // iSerialNumber
|
||||
1 // bNumConfigurations
|
||||
};
|
||||
|
||||
// These descriptors must NOT be "const", because the USB DMA
|
||||
// has trouble accessing flash memory with enough bandwidth
|
||||
// while the processor is executing from flash.
|
||||
|
||||
|
||||
// **************************************************************
|
||||
// USB Configuration
|
||||
// **************************************************************
|
||||
|
||||
// USB Configuration Descriptor. This huge descriptor tells all
|
||||
// of the devices capbilities.
|
||||
static const uint8_t config_descriptor[CONFIG_DESC_SIZE] = {
|
||||
// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
|
||||
9, // bLength;
|
||||
2, // bDescriptorType;
|
||||
LSB(CONFIG_DESC_SIZE), // wTotalLength
|
||||
MSB(CONFIG_DESC_SIZE),
|
||||
NUM_INTERFACE, // bNumInterfaces
|
||||
1, // bConfigurationValue
|
||||
1, // iConfiguration
|
||||
0x80, // bmAttributes
|
||||
50, // bMaxPower
|
||||
|
||||
|
||||
// interface descriptor, CDC
|
||||
USB_DT_INTERFACE_SIZE, // bLength
|
||||
USB_DT_INTERFACE, // bDescriptorType
|
||||
0, // bInterfaceNumber
|
||||
0, // bAlternateSetting
|
||||
1, // bNumEndpoints
|
||||
USB_CLASS_CDC, // bInterfaceClass
|
||||
USB_CDC_SUBCLASS_ACM, // bInterfaceSubClass
|
||||
USB_CDC_PROTOCOL_AT, // bInterfaceProtocol
|
||||
0, // iInterface
|
||||
|
||||
// Header Functional Descriptor
|
||||
0x05, // bLength: Endpoint Descriptor size
|
||||
CS_INTERFACE, // bDescriptorType: CS_INTERFACE
|
||||
USB_CDC_TYPE_HEADER, // bDescriptorSubtype: Header Func Desc
|
||||
0x10, // bcdCDC: spec release number
|
||||
0x01,
|
||||
|
||||
// Call Managment Functional Descriptor
|
||||
0x05, // bFunctionLength
|
||||
CS_INTERFACE, // bDescriptorType: CS_INTERFACE
|
||||
USB_CDC_TYPE_CALL_MANAGEMENT, // bDescriptorSubtype: Call Management Func Desc
|
||||
0, // bmCapabilities: D0+D1
|
||||
1, // bDataInterface: 1
|
||||
|
||||
// ACM Functional Descriptor
|
||||
0x04, // bFunctionLength
|
||||
CS_INTERFACE, // bDescriptorType: CS_INTERFACE
|
||||
USB_CDC_TYPE_ACM, // bDescriptorSubtype: Abstract Control Management desc
|
||||
6, // bmCapabilities
|
||||
|
||||
// Union Functional Descriptor
|
||||
0x05, // bFunctionLength
|
||||
CS_INTERFACE, // bDescriptorType: CS_INTERFACE
|
||||
USB_CDC_TYPE_UNION, // bDescriptorSubtype: Union func desc
|
||||
0, // bMasterInterface: Communication class interface
|
||||
1, // bSlaveInterface0: Data Class Interface
|
||||
|
||||
// Endpoint descriptor
|
||||
USB_DT_ENDPOINT_SIZE, // bLength
|
||||
USB_DT_ENDPOINT, // bDescriptorType
|
||||
0x81, // bEndpointAddress
|
||||
USB_ENDPOINT_ATTR_INTERRUPT, // bmAttributes
|
||||
LSB(16), // wMaxPacketSize
|
||||
MSB(16), // wMaxPacketSize
|
||||
255, // bInterval
|
||||
|
||||
// interface descriptor, CDC
|
||||
USB_DT_INTERFACE_SIZE, // bLength
|
||||
USB_DT_INTERFACE, // bDescriptorType
|
||||
1, // bInterfaceNumber
|
||||
0, // bAlternateSetting
|
||||
2, // bNumEndpoints
|
||||
USB_CLASS_DATA, // bInterfaceClass
|
||||
0, // bInterfaceSubClass
|
||||
0, // bInterfaceProtocol
|
||||
0, // iInterface
|
||||
|
||||
// Endpoint descriptor
|
||||
USB_DT_ENDPOINT_SIZE, // bLength
|
||||
USB_DT_ENDPOINT, // bDescriptorType
|
||||
0x82, // bEndpointAddress
|
||||
USB_ENDPOINT_ATTR_BULK, // bmAttributes
|
||||
LSB(64), // wMaxPacketSize
|
||||
MSB(64), // wMaxPacketSize
|
||||
1, // bInterval
|
||||
|
||||
// Endpoint descriptor
|
||||
USB_DT_ENDPOINT_SIZE, // bLength
|
||||
USB_DT_ENDPOINT, // bDescriptorType
|
||||
0x02, // bEndpointAddress
|
||||
USB_ENDPOINT_ATTR_BULK, // bmAttributes
|
||||
LSB(64), // wMaxPacketSize
|
||||
MSB(64), // wMaxPacketSize
|
||||
1, // bInterval
|
||||
};
|
||||
|
||||
|
||||
// **************************************************************
|
||||
// String Descriptors
|
||||
// **************************************************************
|
||||
|
||||
// The descriptors above can provide human readable strings,
|
||||
// referenced by index numbers. These descriptors are the
|
||||
// actual string data
|
||||
|
||||
static const struct usb_string_descriptor_struct string0 = {
|
||||
4,
|
||||
3,
|
||||
{0x0409}
|
||||
};
|
||||
|
||||
__attribute__((aligned(4)))
|
||||
static const struct usb_string_descriptor_struct usb_string_manufacturer_name = {
|
||||
2 + MANUFACTURER_NAME_LEN,
|
||||
3,
|
||||
MANUFACTURER_NAME
|
||||
};
|
||||
|
||||
__attribute__((aligned(4)))
|
||||
static const struct usb_string_descriptor_struct usb_string_product_name = {
|
||||
2 + PRODUCT_NAME_LEN,
|
||||
3,
|
||||
PRODUCT_NAME
|
||||
};
|
||||
|
||||
// **************************************************************
|
||||
// Descriptors List
|
||||
// **************************************************************
|
||||
|
||||
// This table provides access to all the descriptor data above.
|
||||
|
||||
const usb_descriptor_list_t usb_descriptor_list[] = {
|
||||
{0x0100, sizeof(device_descriptor), device_descriptor},
|
||||
{0x0200, sizeof(config_descriptor), config_descriptor},
|
||||
{0x0300, 0, (const uint8_t *)&string0},
|
||||
{0x0301, 0, (const uint8_t *)&usb_string_manufacturer_name},
|
||||
{0x0302, 0, (const uint8_t *)&usb_string_product_name},
|
||||
{0, 0, NULL}
|
||||
};
|
254
sw/src/usb-epfifo.c
Normal file
254
sw/src/usb-epfifo.c
Normal file
@ -0,0 +1,254 @@
|
||||
#include <irq.h>
|
||||
#include <riscv.h>
|
||||
#include <string.h>
|
||||
#include <usb.h>
|
||||
|
||||
#ifdef CSR_USB_EP_0_OUT_EV_PENDING_ADDR
|
||||
|
||||
#define EP0OUT_BUFFERS 4
|
||||
__attribute__((aligned(4)))
|
||||
static uint8_t volatile usb_ep0out_buffer_len[EP0OUT_BUFFERS];
|
||||
static uint8_t volatile usb_ep0out_buffer[EP0OUT_BUFFERS][256];
|
||||
static uint8_t volatile usb_ep0out_last_tok[EP0OUT_BUFFERS];
|
||||
static volatile uint8_t usb_ep0out_wr_ptr;
|
||||
static volatile uint8_t usb_ep0out_rd_ptr;
|
||||
static const int max_byte_length = 64;
|
||||
|
||||
static const uint8_t * volatile current_data;
|
||||
static volatile int current_length;
|
||||
static volatile int data_offset;
|
||||
static volatile int data_to_send;
|
||||
static int next_packet_is_empty;
|
||||
|
||||
// Note that our PIDs are only bits 2 and 3 of the token,
|
||||
// since all other bits are effectively redundant at this point.
|
||||
enum USB_PID {
|
||||
USB_PID_OUT = 0,
|
||||
USB_PID_SOF = 1,
|
||||
USB_PID_IN = 2,
|
||||
USB_PID_SETUP = 3,
|
||||
};
|
||||
|
||||
enum epfifo_response {
|
||||
EPF_ACK = 0,
|
||||
EPF_NAK = 1,
|
||||
EPF_NONE = 2,
|
||||
EPF_STALL = 3,
|
||||
};
|
||||
|
||||
#define USB_EV_ERROR 1
|
||||
#define USB_EV_PACKET 2
|
||||
|
||||
void usb_idle(void) {
|
||||
usb_ep_0_out_ev_enable_write(0);
|
||||
usb_ep_0_in_ev_enable_write(0);
|
||||
|
||||
// Reject all incoming data, since there is no handler anymore
|
||||
usb_ep_0_out_respond_write(EPF_NAK);
|
||||
|
||||
// Reject outgoing data, since we don't have any to give.
|
||||
usb_ep_0_in_respond_write(EPF_NAK);
|
||||
|
||||
irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT));
|
||||
}
|
||||
|
||||
void usb_disconnect(void) {
|
||||
usb_ep_0_out_ev_enable_write(0);
|
||||
usb_ep_0_in_ev_enable_write(0);
|
||||
irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT));
|
||||
usb_pullup_out_write(0);
|
||||
}
|
||||
|
||||
void usb_connect(void) {
|
||||
|
||||
usb_ep_0_out_ev_pending_write(usb_ep_0_out_ev_enable_read());
|
||||
usb_ep_0_in_ev_pending_write(usb_ep_0_in_ev_pending_read());
|
||||
usb_ep_0_out_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR);
|
||||
usb_ep_0_in_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR);
|
||||
|
||||
// Accept incoming data by default.
|
||||
usb_ep_0_out_respond_write(EPF_ACK);
|
||||
|
||||
// Reject outgoing data, since we have none to give yet.
|
||||
usb_ep_0_in_respond_write(EPF_NAK);
|
||||
|
||||
usb_pullup_out_write(1);
|
||||
|
||||
irq_setmask(irq_getmask() | (1 << USB_INTERRUPT));
|
||||
}
|
||||
|
||||
void usb_init(void) {
|
||||
usb_ep0out_wr_ptr = 0;
|
||||
usb_ep0out_rd_ptr = 0;
|
||||
usb_pullup_out_write(0);
|
||||
return;
|
||||
}
|
||||
|
||||
static void process_tx(void) {
|
||||
|
||||
// Don't allow requeueing -- only queue more data if we're
|
||||
// currently set up to respond NAK.
|
||||
if (usb_ep_0_in_respond_read() != EPF_NAK) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Prevent us from double-filling the buffer.
|
||||
if (!usb_ep_0_in_ibuf_empty_read()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!current_data || !current_length) {
|
||||
return;
|
||||
}
|
||||
|
||||
data_offset += data_to_send;
|
||||
|
||||
data_to_send = current_length - data_offset;
|
||||
|
||||
// Clamp the data to the maximum packet length
|
||||
if (data_to_send > max_byte_length) {
|
||||
data_to_send = max_byte_length;
|
||||
next_packet_is_empty = 0;
|
||||
}
|
||||
else if (data_to_send == max_byte_length) {
|
||||
next_packet_is_empty = 1;
|
||||
}
|
||||
else if (next_packet_is_empty) {
|
||||
next_packet_is_empty = 0;
|
||||
data_to_send = 0;
|
||||
}
|
||||
else if (current_data == NULL || data_to_send <= 0) {
|
||||
next_packet_is_empty = 0;
|
||||
current_data = NULL;
|
||||
current_length = 0;
|
||||
data_offset = 0;
|
||||
data_to_send = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
int this_offset;
|
||||
for (this_offset = data_offset; this_offset < (data_offset + data_to_send); this_offset++) {
|
||||
usb_ep_0_in_ibuf_head_write(current_data[this_offset]);
|
||||
}
|
||||
usb_ep_0_in_respond_write(EPF_ACK);
|
||||
return;
|
||||
}
|
||||
|
||||
void usb_send(const void *data, int total_count) {
|
||||
|
||||
while ((current_length || current_data))// && usb_ep_0_in_respond_read() != EPF_NAK)
|
||||
;
|
||||
current_data = (uint8_t *)data;
|
||||
current_length = total_count;
|
||||
data_offset = 0;
|
||||
data_to_send = 0;
|
||||
process_tx();
|
||||
}
|
||||
|
||||
void usb_wait_for_send_done(void) {
|
||||
while (current_data && current_length)
|
||||
usb_poll();
|
||||
while ((usb_ep_0_in_dtb_read() & 1) == 1)
|
||||
usb_poll();
|
||||
}
|
||||
|
||||
void usb_isr(void) {
|
||||
uint8_t ep0o_pending = usb_ep_0_out_ev_pending_read();
|
||||
uint8_t ep0i_pending = usb_ep_0_in_ev_pending_read();
|
||||
|
||||
// We got an OUT or a SETUP packet. Copy it to usb_ep0out_buffer
|
||||
// and clear the "pending" bit.
|
||||
if (ep0o_pending) {
|
||||
uint8_t last_tok = usb_ep_0_out_last_tok_read();
|
||||
|
||||
int byte_count = 0;
|
||||
usb_ep0out_last_tok[usb_ep0out_wr_ptr] = last_tok;
|
||||
volatile uint8_t * obuf = usb_ep0out_buffer[usb_ep0out_wr_ptr];
|
||||
if (!usb_ep_0_out_obuf_empty_read()) {
|
||||
while (!usb_ep_0_out_obuf_empty_read()) {
|
||||
obuf[byte_count++] = usb_ep_0_out_obuf_head_read();
|
||||
usb_ep_0_out_obuf_head_write(0);
|
||||
}
|
||||
}
|
||||
|
||||
if (byte_count >= 2)
|
||||
usb_ep0out_buffer_len[usb_ep0out_wr_ptr] = byte_count - 2 /* Strip off CRC16 */;
|
||||
usb_ep0out_wr_ptr = (usb_ep0out_wr_ptr + 1) & (EP0OUT_BUFFERS-1);
|
||||
|
||||
if (last_tok == USB_PID_SETUP) {
|
||||
usb_ep_0_in_dtb_write(1);
|
||||
data_offset = 0;
|
||||
current_length = 0;
|
||||
current_data = NULL;
|
||||
}
|
||||
|
||||
usb_ep_0_out_ev_pending_write(ep0o_pending);
|
||||
usb_ep_0_out_respond_write(EPF_ACK);
|
||||
}
|
||||
|
||||
// We just got an "IN" token. Send data if we have it.
|
||||
if (ep0i_pending) {
|
||||
usb_ep_0_in_respond_write(EPF_NAK);
|
||||
usb_ep_0_in_ev_pending_write(ep0i_pending);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void usb_ack_in(void) {
|
||||
while (usb_ep_0_in_respond_read() == EPF_ACK)
|
||||
;
|
||||
usb_ep_0_in_respond_write(EPF_ACK);
|
||||
}
|
||||
|
||||
void usb_ack_out(void) {
|
||||
while (usb_ep_0_out_respond_read() == EPF_ACK)
|
||||
;
|
||||
usb_ep_0_out_respond_write(EPF_ACK);
|
||||
}
|
||||
|
||||
void usb_err(void) {
|
||||
usb_ep_0_out_respond_write(EPF_STALL);
|
||||
usb_ep_0_in_respond_write(EPF_STALL);
|
||||
}
|
||||
|
||||
int usb_recv(void *buffer, unsigned int buffer_len) {
|
||||
|
||||
// Set the OUT response to ACK, since we are in a position to receive data now.
|
||||
usb_ep_0_out_respond_write(EPF_ACK);
|
||||
while (1) {
|
||||
if (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) {
|
||||
if (usb_ep0out_last_tok[usb_ep0out_rd_ptr] == USB_PID_OUT) {
|
||||
unsigned int ep0_buffer_len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr];
|
||||
if (ep0_buffer_len < buffer_len)
|
||||
buffer_len = ep0_buffer_len;
|
||||
// usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0;
|
||||
memcpy(buffer, (void *)&usb_ep0out_buffer[usb_ep0out_rd_ptr], buffer_len);
|
||||
usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1);
|
||||
return buffer_len;
|
||||
}
|
||||
usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void usb_poll(void) {
|
||||
// If some data was received, then process it.
|
||||
while (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) {
|
||||
const struct usb_setup_request *request = (const struct usb_setup_request *)(usb_ep0out_buffer[usb_ep0out_rd_ptr]);
|
||||
// uint8_t len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr];
|
||||
uint8_t last_tok = usb_ep0out_last_tok[usb_ep0out_rd_ptr];
|
||||
|
||||
// usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0;
|
||||
usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1);
|
||||
|
||||
if (last_tok == USB_PID_SETUP) {
|
||||
usb_setup(request);
|
||||
}
|
||||
}
|
||||
|
||||
process_tx();
|
||||
}
|
||||
|
||||
#endif /* CSR_USB_EP_0_OUT_EV_PENDING_ADDR */
|
114
sw/src/usb-setup.c
Normal file
114
sw/src/usb-setup.c
Normal file
@ -0,0 +1,114 @@
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <usb.h>
|
||||
|
||||
#include <usb-desc.h>
|
||||
|
||||
static uint8_t reply_buffer[8];
|
||||
static uint8_t usb_configuration = 0;
|
||||
|
||||
void usb_setup(const struct usb_setup_request *setup)
|
||||
{
|
||||
const uint8_t *data = NULL;
|
||||
uint32_t datalen = 0;
|
||||
const usb_descriptor_list_t *list;
|
||||
|
||||
switch (setup->wRequestAndType)
|
||||
{
|
||||
case 0x0500: // SET_ADDRESS
|
||||
case 0x0b01: // SET_INTERFACE
|
||||
break;
|
||||
|
||||
case 0x0900: // SET_CONFIGURATION
|
||||
usb_configuration = setup->wValue;
|
||||
break;
|
||||
|
||||
case 0x0880: // GET_CONFIGURATION
|
||||
reply_buffer[0] = usb_configuration;
|
||||
datalen = 1;
|
||||
data = reply_buffer;
|
||||
break;
|
||||
|
||||
case 0x0080: // GET_STATUS (device)
|
||||
reply_buffer[0] = 0;
|
||||
reply_buffer[1] = 0;
|
||||
datalen = 2;
|
||||
data = reply_buffer;
|
||||
break;
|
||||
|
||||
case 0x0082: // GET_STATUS (endpoint)
|
||||
if (setup->wIndex > 0)
|
||||
{
|
||||
usb_err();
|
||||
return;
|
||||
}
|
||||
reply_buffer[0] = 0;
|
||||
reply_buffer[1] = 0;
|
||||
|
||||
// XXX handle endpoint stall here
|
||||
data = reply_buffer;
|
||||
datalen = 2;
|
||||
break;
|
||||
|
||||
case 0x0102: // CLEAR_FEATURE (endpoint)
|
||||
if (setup->wIndex > 0 || setup->wValue != 0)
|
||||
{
|
||||
// TODO: do we need to handle IN vs OUT here?
|
||||
usb_err();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x0302: // SET_FEATURE (endpoint)
|
||||
if (setup->wIndex > 0 || setup->wValue != 0)
|
||||
{
|
||||
// TODO: do we need to handle IN vs OUT here?
|
||||
usb_err();
|
||||
return;
|
||||
}
|
||||
// XXX: Should we set the stall bit?
|
||||
// USB->DIEP0CTL |= USB_DIEP_CTL_STALL;
|
||||
// TODO: do we need to clear the data toggle here?
|
||||
break;
|
||||
|
||||
case 0x0680: // GET_DESCRIPTOR
|
||||
case 0x0681:
|
||||
for (list = usb_descriptor_list; 1; list++)
|
||||
{
|
||||
if (list->addr == NULL)
|
||||
break;
|
||||
if (setup->wValue == list->wValue)
|
||||
{
|
||||
data = list->addr;
|
||||
if ((setup->wValue >> 8) == 3)
|
||||
{
|
||||
// for string descriptors, use the descriptor's
|
||||
// length field, allowing runtime configured
|
||||
// length.
|
||||
datalen = *(list->addr);
|
||||
}
|
||||
else
|
||||
{
|
||||
datalen = list->length;
|
||||
}
|
||||
goto send;
|
||||
}
|
||||
}
|
||||
usb_err();
|
||||
return;
|
||||
|
||||
default:
|
||||
usb_err();
|
||||
return;
|
||||
}
|
||||
|
||||
send:
|
||||
if (data && datalen) {
|
||||
if (datalen > setup->wLength)
|
||||
datalen = setup->wLength;
|
||||
usb_send(data, datalen);
|
||||
}
|
||||
else
|
||||
usb_ack_in();
|
||||
return;
|
||||
}
|
Reference in New Issue
Block a user