add files from nrf52832 bootloader project

This commit is contained in:
hathach
2018-02-07 23:32:49 +07:00
parent ac1f0e7955
commit 9f1d9f321e
186 changed files with 83021 additions and 0 deletions

View File

@ -0,0 +1,132 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_uart.h"
#include "nrf_drv_uart.h"
#include "nrf_assert.h"
#include "sdk_common.h"
static uint8_t tx_buffer[1];
static uint8_t rx_buffer[1];
static volatile bool rx_done;
static app_uart_event_handler_t m_event_handler; /**< Event handler function. */
void uart_event_handler(nrf_drv_uart_event_t * p_event, void* p_context)
{
if (p_event->type == NRF_DRV_UART_EVT_RX_DONE)
{
app_uart_evt_t app_uart_event;
app_uart_event.evt_type = APP_UART_DATA;
app_uart_event.data.value = p_event->data.rxtx.p_data[0];
(void)nrf_drv_uart_rx(rx_buffer,1);
rx_done = true;
m_event_handler(&app_uart_event);
}
else if (p_event->type == NRF_DRV_UART_EVT_ERROR)
{
app_uart_evt_t app_uart_event;
app_uart_event.evt_type = APP_UART_COMMUNICATION_ERROR;
app_uart_event.data.error_communication = p_event->data.error.error_mask;
(void)nrf_drv_uart_rx(rx_buffer,1);
m_event_handler(&app_uart_event);
}
else if (p_event->type == NRF_DRV_UART_EVT_TX_DONE)
{
// Last byte from FIFO transmitted, notify the application.
// Notify that new data is available if this was first byte put in the buffer.
app_uart_evt_t app_uart_event;
app_uart_event.evt_type = APP_UART_TX_EMPTY;
m_event_handler(&app_uart_event);
}
}
uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
app_uart_buffers_t * p_buffers,
app_uart_event_handler_t event_handler,
app_irq_priority_t irq_priority)
{
nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG;
config.baudrate = (nrf_uart_baudrate_t)p_comm_params->baud_rate;
config.hwfc = (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_DISABLED) ?
NRF_UART_HWFC_DISABLED : NRF_UART_HWFC_ENABLED;
config.interrupt_priority = irq_priority;
config.parity = p_comm_params->use_parity ? NRF_UART_PARITY_INCLUDED : NRF_UART_PARITY_EXCLUDED;
config.pselcts = p_comm_params->cts_pin_no;
config.pselrts = p_comm_params->rts_pin_no;
config.pselrxd = p_comm_params->rx_pin_no;
config.pseltxd = p_comm_params->tx_pin_no;
m_event_handler = event_handler;
rx_done = false;
if (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_LOW_POWER)
{
return NRF_ERROR_NOT_SUPPORTED;
}
uint32_t err_code = nrf_drv_uart_init(&config, uart_event_handler);
VERIFY_SUCCESS(err_code);
#ifdef NRF52
if (!config.use_easy_dma)
#endif
{
nrf_drv_uart_rx_enable();
}
return nrf_drv_uart_rx(rx_buffer,1);
}
uint32_t app_uart_get(uint8_t * p_byte)
{
ASSERT(p_byte);
uint32_t err_code = NRF_SUCCESS;
if (rx_done)
{
*p_byte = rx_buffer[0];
}
else
{
err_code = NRF_ERROR_NOT_FOUND;
}
return err_code;
}
uint32_t app_uart_put(uint8_t byte)
{
tx_buffer[0] = byte;
ret_code_t ret = nrf_drv_uart_tx(tx_buffer,1);
if (NRF_ERROR_BUSY == ret)
{
return NRF_ERROR_NO_MEM;
}
else if (ret != NRF_SUCCESS)
{
return NRF_ERROR_INTERNAL;
}
else
{
return NRF_SUCCESS;
}
}
uint32_t app_uart_flush(void)
{
return NRF_SUCCESS;
}
uint32_t app_uart_close(void)
{
nrf_drv_uart_uninit();
return NRF_SUCCESS;
}

View File

@ -0,0 +1,227 @@
/* Copyright (c) 2013 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
/**@file
*
* @defgroup app_uart UART module
* @{
* @ingroup app_common
*
* @brief UART module interface.
*/
#ifndef APP_UART_H__
#define APP_UART_H__
#include <stdint.h>
#include <stdbool.h>
#include "app_util_platform.h"
#define UART_PIN_DISCONNECTED 0xFFFFFFFF /**< Value indicating that no pin is connected to this UART register. */
/**@brief UART Flow Control modes for the peripheral.
*/
typedef enum
{
APP_UART_FLOW_CONTROL_DISABLED, /**< UART Hw Flow Control is disabled. */
APP_UART_FLOW_CONTROL_ENABLED, /**< Standard UART Hw Flow Control is enabled. */
APP_UART_FLOW_CONTROL_LOW_POWER /**< Specialized UART Hw Flow Control is used. The Low Power setting allows the \nRFXX to Power Off the UART module when CTS is in-active, and re-enabling the UART when the CTS signal becomes active. This allows the \nRFXX to safe power by only using the UART module when it is needed by the remote site. */
} app_uart_flow_control_t;
/**@brief UART communication structure holding configuration settings for the peripheral.
*/
typedef struct
{
uint8_t rx_pin_no; /**< RX pin number. */
uint8_t tx_pin_no; /**< TX pin number. */
uint8_t rts_pin_no; /**< RTS pin number, only used if flow control is enabled. */
uint8_t cts_pin_no; /**< CTS pin number, only used if flow control is enabled. */
app_uart_flow_control_t flow_control; /**< Flow control setting, if flow control is used, the system will use low power UART mode, based on CTS signal. */
bool use_parity; /**< Even parity if TRUE, no parity if FALSE. */
uint32_t baud_rate; /**< Baud rate configuration. */
} app_uart_comm_params_t;
/**@brief UART buffer for transmitting/receiving data.
*/
typedef struct
{
uint8_t * rx_buf; /**< Pointer to the RX buffer. */
uint32_t rx_buf_size; /**< Size of the RX buffer. */
uint8_t * tx_buf; /**< Pointer to the TX buffer. */
uint32_t tx_buf_size; /**< Size of the TX buffer. */
} app_uart_buffers_t;
/**@brief Enumeration which defines events used by the UART module upon data reception or error.
*
* @details The event type is used to indicate the type of additional information in the event
* @ref app_uart_evt_t.
*/
typedef enum
{
APP_UART_DATA_READY, /**< An event indicating that UART data has been received. The data is available in the FIFO and can be fetched using @ref app_uart_get. */
APP_UART_FIFO_ERROR, /**< An error in the FIFO module used by the app_uart module has occured. The FIFO error code is stored in app_uart_evt_t.data.error_code field. */
APP_UART_COMMUNICATION_ERROR, /**< An communication error has occured during reception. The error is stored in app_uart_evt_t.data.error_communication field. */
APP_UART_TX_EMPTY, /**< An event indicating that UART has completed transmission of all available data in the TX FIFO. */
APP_UART_DATA, /**< An event indicating that UART data has been received, and data is present in data field. This event is only used when no FIFO is configured. */
} app_uart_evt_type_t;
/**@brief Struct containing events from the UART module.
*
* @details The app_uart_evt_t is used to notify the application of asynchronous events when data
* are received on the UART peripheral or in case an error occured during data reception.
*/
typedef struct
{
app_uart_evt_type_t evt_type; /**< Type of event. */
union
{
uint32_t error_communication; /**< Field used if evt_type is: APP_UART_COMMUNICATION_ERROR. This field contains the value in the ERRORSRC register for the UART peripheral. The UART_ERRORSRC_x defines from nrf5x_bitfields.h can be used to parse the error code. See also the \nRFXX Series Reference Manual for specification. */
uint32_t error_code; /**< Field used if evt_type is: NRF_ERROR_x. Additional status/error code if the error event type is APP_UART_FIFO_ERROR. This error code refer to errors defined in nrf_error.h. */
uint8_t value; /**< Field used if evt_type is: NRF_ERROR_x. Additional status/error code if the error event type is APP_UART_FIFO_ERROR. This error code refer to errors defined in nrf_error.h. */
} data;
} app_uart_evt_t;
/**@brief Function for handling app_uart event callback.
*
* @details Upon an event in the app_uart module this callback function will be called to notify
* the application about the event.
*
* @param[in] p_app_uart_event Pointer to UART event.
*/
typedef void (* app_uart_event_handler_t) (app_uart_evt_t * p_app_uart_event);
/**@brief Macro for safe initialization of the UART module in a single user instance when using
* a FIFO together with UART.
*
* @param[in] P_COMM_PARAMS Pointer to a UART communication structure: app_uart_comm_params_t
* @param[in] RX_BUF_SIZE Size of desired RX buffer, must be a power of 2 or ZERO (No FIFO).
* @param[in] TX_BUF_SIZE Size of desired TX buffer, must be a power of 2 or ZERO (No FIFO).
* @param[in] EVT_HANDLER Event handler function to be called when an event occurs in the
* UART module.
* @param[in] IRQ_PRIO IRQ priority, app_irq_priority_t, for the UART module irq handler.
* @param[out] ERR_CODE The return value of the UART initialization function will be
* written to this parameter.
*
* @note Since this macro allocates a buffer and registers the module as a GPIOTE user when flow
* control is enabled, it must only be called once.
*/
#define APP_UART_FIFO_INIT(P_COMM_PARAMS, RX_BUF_SIZE, TX_BUF_SIZE, EVT_HANDLER, IRQ_PRIO, ERR_CODE) \
do \
{ \
app_uart_buffers_t buffers; \
static uint8_t rx_buf[RX_BUF_SIZE]; \
static uint8_t tx_buf[TX_BUF_SIZE]; \
\
buffers.rx_buf = rx_buf; \
buffers.rx_buf_size = sizeof (rx_buf); \
buffers.tx_buf = tx_buf; \
buffers.tx_buf_size = sizeof (tx_buf); \
ERR_CODE = app_uart_init(P_COMM_PARAMS, &buffers, EVT_HANDLER, IRQ_PRIO); \
} while (0)
/**@brief Macro for safe initialization of the UART module in a single user instance.
*
* @param[in] P_COMM_PARAMS Pointer to a UART communication structure: app_uart_comm_params_t
* @param[in] EVT_HANDLER Event handler function to be called when an event occurs in the
* UART module.
* @param[in] IRQ_PRIO IRQ priority, app_irq_priority_t, for the UART module irq handler.
* @param[out] ERR_CODE The return value of the UART initialization function will be
* written to this parameter.
*
* @note Since this macro allocates registers the module as a GPIOTE user when flow control is
* enabled, it must only be called once.
*/
#define APP_UART_INIT(P_COMM_PARAMS, EVT_HANDLER, IRQ_PRIO, ERR_CODE) \
do \
{ \
ERR_CODE = app_uart_init(P_COMM_PARAMS, NULL, EVT_HANDLER, IRQ_PRIO); \
} while (0)
/**@brief Function for initializing the UART module. Use this initialization when several instances of the UART
* module are needed.
*
*
* @note Normally single initialization should be done using the APP_UART_INIT() or
* APP_UART_INIT_FIFO() macro depending on whether the FIFO should be used by the UART, as
* that will allocate the buffers needed by the UART module (including aligning the buffer
* correctly).
* @param[in] p_comm_params Pin and communication parameters.
* @param[in] p_buffers RX and TX buffers, NULL is FIFO is not used.
* @param[in] error_handler Function to be called in case of an error.
* @param[in] irq_priority Interrupt priority level.
*
* @retval NRF_SUCCESS If successful initialization.
* @retval NRF_ERROR_INVALID_LENGTH If a provided buffer is not a power of two.
* @retval NRF_ERROR_NULL If one of the provided buffers is a NULL pointer.
*
* The below errors are propagated by the UART module to the caller upon registration when Hardware
* Flow Control is enabled. When Hardware Flow Control is not used, these errors cannot occur.
* @retval NRF_ERROR_INVALID_STATE The GPIOTE module is not in a valid state when registering
* the UART module as a user.
* @retval NRF_ERROR_INVALID_PARAM The UART module provides an invalid callback function when
* registering the UART module as a user.
* Or the value pointed to by *p_uart_uid is not a valid
* GPIOTE number.
* @retval NRF_ERROR_NO_MEM GPIOTE module has reached the maximum number of users.
*/
uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
app_uart_buffers_t * p_buffers,
app_uart_event_handler_t error_handler,
app_irq_priority_t irq_priority);
/**@brief Function for getting a byte from the UART.
*
* @details This function will get the next byte from the RX buffer. If the RX buffer is empty
* an error code will be returned and the app_uart module will generate an event upon
* reception of the first byte which is added to the RX buffer.
*
* @param[out] p_byte Pointer to an address where next byte received on the UART will be copied.
*
* @retval NRF_SUCCESS If a byte has been received and pushed to the pointer provided.
* @retval NRF_ERROR_NOT_FOUND If no byte is available in the RX buffer of the app_uart module.
*/
uint32_t app_uart_get(uint8_t * p_byte);
/**@brief Function for putting a byte on the UART.
*
* @details This call is non-blocking.
*
* @param[in] byte Byte to be transmitted on the UART.
*
* @retval NRF_SUCCESS If the byte was successfully put on the TX buffer for transmission.
* @retval NRF_ERROR_NO_MEM If no more space is available in the TX buffer.
* NRF_ERROR_NO_MEM may occur if flow control is enabled and CTS signal
* is high for a long period and the buffer fills up.
* @retval NRF_ERROR_INTERNAL If UART driver reported error.
*/
uint32_t app_uart_put(uint8_t byte);
/**@brief Function for flushing the RX and TX buffers (Only valid if FIFO is used).
* This function does nothing if FIFO is not used.
*
* @retval NRF_SUCCESS Flushing completed (Current implementation will always succeed).
*/
uint32_t app_uart_flush(void);
/**@brief Function for closing the UART module.
*
* @retval NRF_SUCCESS If successfully closed.
* @retval NRF_ERROR_INVALID_PARAM If an invalid user id is provided or the user id differs from
* the current active user.
*/
uint32_t app_uart_close(void);
#endif //APP_UART_H__
/** @} */

View File

@ -0,0 +1,191 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_uart.h"
#include "app_fifo.h"
#include "nrf_drv_uart.h"
#include "nrf_assert.h"
#include "sdk_common.h"
static __INLINE uint32_t fifo_length(app_fifo_t * const fifo)
{
uint32_t tmp = fifo->read_pos;
return fifo->write_pos - tmp;
}
#define FIFO_LENGTH(F) fifo_length(&F) /**< Macro to calculate length of a FIFO. */
static app_uart_event_handler_t m_event_handler; /**< Event handler function. */
static uint8_t tx_buffer[1];
static uint8_t rx_buffer[1];
static app_fifo_t m_rx_fifo; /**< RX FIFO buffer for storing data received on the UART until the application fetches them using app_uart_get(). */
static app_fifo_t m_tx_fifo; /**< TX FIFO buffer for storing data to be transmitted on the UART when TXD is ready. Data is put to the buffer on using app_uart_put(). */
static void uart_event_handler(nrf_drv_uart_event_t * p_event, void* p_context)
{
app_uart_evt_t app_uart_event;
if (p_event->type == NRF_DRV_UART_EVT_RX_DONE)
{
// Write received byte to FIFO
uint32_t err_code = app_fifo_put(&m_rx_fifo, p_event->data.rxtx.p_data[0]);
if (err_code != NRF_SUCCESS)
{
app_uart_event.evt_type = APP_UART_FIFO_ERROR;
app_uart_event.data.error_code = err_code;
m_event_handler(&app_uart_event);
}
// Notify that new data is available if this was first byte put in the buffer.
else if (FIFO_LENGTH(m_rx_fifo) == 1)
{
app_uart_event.evt_type = APP_UART_DATA_READY;
m_event_handler(&app_uart_event);
}
else
{
// Do nothing, only send event if first byte was added or overflow in FIFO occurred.
}
if (FIFO_LENGTH(m_rx_fifo) <= m_rx_fifo.buf_size_mask)
{
(void)nrf_drv_uart_rx(rx_buffer, 1);
}
}
else if (p_event->type == NRF_DRV_UART_EVT_ERROR)
{
app_uart_event.evt_type = APP_UART_COMMUNICATION_ERROR;
app_uart_event.data.error_communication = p_event->data.error.error_mask;
(void)nrf_drv_uart_rx(rx_buffer, 1);
m_event_handler(&app_uart_event);
}
else if (p_event->type == NRF_DRV_UART_EVT_TX_DONE)
{
// Get next byte from FIFO.
if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
{
(void)nrf_drv_uart_tx(tx_buffer, 1);
}
if (FIFO_LENGTH(m_tx_fifo) == 0)
{
// Last byte from FIFO transmitted, notify the application.
app_uart_event.evt_type = APP_UART_TX_EMPTY;
m_event_handler(&app_uart_event);
}
}
}
uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
app_uart_buffers_t * p_buffers,
app_uart_event_handler_t event_handler,
app_irq_priority_t irq_priority)
{
uint32_t err_code;
m_event_handler = event_handler;
if (p_buffers == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
// Configure buffer RX buffer.
err_code = app_fifo_init(&m_rx_fifo, p_buffers->rx_buf, p_buffers->rx_buf_size);
VERIFY_SUCCESS(err_code);
// Configure buffer TX buffer.
err_code = app_fifo_init(&m_tx_fifo, p_buffers->tx_buf, p_buffers->tx_buf_size);
VERIFY_SUCCESS(err_code);
nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG;
config.baudrate = (nrf_uart_baudrate_t)p_comm_params->baud_rate;
config.hwfc = (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_DISABLED) ?
NRF_UART_HWFC_DISABLED : NRF_UART_HWFC_ENABLED;
config.interrupt_priority = irq_priority;
config.parity = p_comm_params->use_parity ? NRF_UART_PARITY_INCLUDED : NRF_UART_PARITY_EXCLUDED;
config.pselcts = p_comm_params->cts_pin_no;
config.pselrts = p_comm_params->rts_pin_no;
config.pselrxd = p_comm_params->rx_pin_no;
config.pseltxd = p_comm_params->tx_pin_no;
err_code = nrf_drv_uart_init(&config, uart_event_handler);
VERIFY_SUCCESS(err_code);
#ifdef NRF52
if (!config.use_easy_dma)
#endif
{
nrf_drv_uart_rx_enable();
}
return nrf_drv_uart_rx(rx_buffer,1);
}
uint32_t app_uart_flush(void)
{
uint32_t err_code;
err_code = app_fifo_flush(&m_rx_fifo);
VERIFY_SUCCESS(err_code);
err_code = app_fifo_flush(&m_tx_fifo);
VERIFY_SUCCESS(err_code);
return NRF_SUCCESS;
}
uint32_t app_uart_get(uint8_t * p_byte)
{
ASSERT(p_byte);
// If FIFO was full new request to receive one byte was not scheduled. Must be done here.
if (FIFO_LENGTH(m_rx_fifo) == m_rx_fifo.buf_size_mask)
{
uint32_t err_code = nrf_drv_uart_rx(rx_buffer,1);
if (err_code != NRF_SUCCESS)
{
return NRF_ERROR_NOT_FOUND;
}
}
return app_fifo_get(&m_rx_fifo, p_byte);
}
uint32_t app_uart_put(uint8_t byte)
{
uint32_t err_code;
err_code = app_fifo_put(&m_tx_fifo, byte);
if (err_code == NRF_SUCCESS)
{
// The new byte has been added to FIFO. It will be picked up from there
// (in 'uart_event_handler') when all preceding bytes are transmitted.
// But if UART is not transmitting anything at the moment, we must start
// a new transmission here.
if (!nrf_drv_uart_tx_in_progress())
{
// This operation should be almost always successful, since we've
// just added a byte to FIFO, but if some bigger delay occurred
// (some heavy interrupt handler routine has been executed) since
// that time, FIFO might be empty already.
if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
{
err_code = nrf_drv_uart_tx(tx_buffer, 1);
}
}
}
return err_code;
}
uint32_t app_uart_close(void)
{
nrf_drv_uart_uninit();
return NRF_SUCCESS;
}

View File

@ -0,0 +1,101 @@
/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#if !defined(NRF_LOG_USES_RTT) || NRF_LOG_USES_RTT != 1
#if !defined(HAS_SIMPLE_UART_RETARGET)
#include <stdio.h>
#include <stdint.h>
#include "app_uart.h"
#include "nordic_common.h"
#include "nrf_error.h"
#if !defined(__ICCARM__)
struct __FILE
{
int handle;
};
#endif
FILE __stdout;
FILE __stdin;
#if defined(__CC_ARM) || defined(__ICCARM__)
int fgetc(FILE * p_file)
{
uint8_t input;
while (app_uart_get(&input) == NRF_ERROR_NOT_FOUND)
{
// No implementation needed.
}
return input;
}
int fputc(int ch, FILE * p_file)
{
UNUSED_PARAMETER(p_file);
UNUSED_VARIABLE(app_uart_put((uint8_t)ch));
return ch;
}
#elif defined(__GNUC__)
int _write(int file, const char * p_char, int len)
{
int i;
UNUSED_PARAMETER(file);
for (i = 0; i < len; i++)
{
UNUSED_VARIABLE(app_uart_put(*p_char++));
}
return len;
}
int _read(int file, char * p_char, int len)
{
UNUSED_PARAMETER(file);
while (app_uart_get((uint8_t *)p_char) == NRF_ERROR_NOT_FOUND)
{
// No implementation needed.
}
return 1;
}
#endif
#if defined(__ICCARM__)
__ATTRIBUTES size_t __write(int file, const unsigned char * p_char, size_t len)
{
int i;
UNUSED_PARAMETER(file);
for (i = 0; i < len; i++)
{
UNUSED_VARIABLE(app_uart_put(*p_char++));
}
return len;
}
#endif
#endif // !defined(HAS_SIMPLE_UART_RETARGET)
#endif // NRF_LOG_USES_RTT != 1