simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/libraries/uart/app_uart_fifo.c
2018-02-07 23:32:49 +07:00

192 lines
6.5 KiB
C

/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_uart.h"
#include "app_fifo.h"
#include "nrf_drv_uart.h"
#include "nrf_assert.h"
#include "sdk_common.h"
static __INLINE uint32_t fifo_length(app_fifo_t * const fifo)
{
uint32_t tmp = fifo->read_pos;
return fifo->write_pos - tmp;
}
#define FIFO_LENGTH(F) fifo_length(&F) /**< Macro to calculate length of a FIFO. */
static app_uart_event_handler_t m_event_handler; /**< Event handler function. */
static uint8_t tx_buffer[1];
static uint8_t rx_buffer[1];
static app_fifo_t m_rx_fifo; /**< RX FIFO buffer for storing data received on the UART until the application fetches them using app_uart_get(). */
static app_fifo_t m_tx_fifo; /**< TX FIFO buffer for storing data to be transmitted on the UART when TXD is ready. Data is put to the buffer on using app_uart_put(). */
static void uart_event_handler(nrf_drv_uart_event_t * p_event, void* p_context)
{
app_uart_evt_t app_uart_event;
if (p_event->type == NRF_DRV_UART_EVT_RX_DONE)
{
// Write received byte to FIFO
uint32_t err_code = app_fifo_put(&m_rx_fifo, p_event->data.rxtx.p_data[0]);
if (err_code != NRF_SUCCESS)
{
app_uart_event.evt_type = APP_UART_FIFO_ERROR;
app_uart_event.data.error_code = err_code;
m_event_handler(&app_uart_event);
}
// Notify that new data is available if this was first byte put in the buffer.
else if (FIFO_LENGTH(m_rx_fifo) == 1)
{
app_uart_event.evt_type = APP_UART_DATA_READY;
m_event_handler(&app_uart_event);
}
else
{
// Do nothing, only send event if first byte was added or overflow in FIFO occurred.
}
if (FIFO_LENGTH(m_rx_fifo) <= m_rx_fifo.buf_size_mask)
{
(void)nrf_drv_uart_rx(rx_buffer, 1);
}
}
else if (p_event->type == NRF_DRV_UART_EVT_ERROR)
{
app_uart_event.evt_type = APP_UART_COMMUNICATION_ERROR;
app_uart_event.data.error_communication = p_event->data.error.error_mask;
(void)nrf_drv_uart_rx(rx_buffer, 1);
m_event_handler(&app_uart_event);
}
else if (p_event->type == NRF_DRV_UART_EVT_TX_DONE)
{
// Get next byte from FIFO.
if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
{
(void)nrf_drv_uart_tx(tx_buffer, 1);
}
if (FIFO_LENGTH(m_tx_fifo) == 0)
{
// Last byte from FIFO transmitted, notify the application.
app_uart_event.evt_type = APP_UART_TX_EMPTY;
m_event_handler(&app_uart_event);
}
}
}
uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
app_uart_buffers_t * p_buffers,
app_uart_event_handler_t event_handler,
app_irq_priority_t irq_priority)
{
uint32_t err_code;
m_event_handler = event_handler;
if (p_buffers == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
// Configure buffer RX buffer.
err_code = app_fifo_init(&m_rx_fifo, p_buffers->rx_buf, p_buffers->rx_buf_size);
VERIFY_SUCCESS(err_code);
// Configure buffer TX buffer.
err_code = app_fifo_init(&m_tx_fifo, p_buffers->tx_buf, p_buffers->tx_buf_size);
VERIFY_SUCCESS(err_code);
nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG;
config.baudrate = (nrf_uart_baudrate_t)p_comm_params->baud_rate;
config.hwfc = (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_DISABLED) ?
NRF_UART_HWFC_DISABLED : NRF_UART_HWFC_ENABLED;
config.interrupt_priority = irq_priority;
config.parity = p_comm_params->use_parity ? NRF_UART_PARITY_INCLUDED : NRF_UART_PARITY_EXCLUDED;
config.pselcts = p_comm_params->cts_pin_no;
config.pselrts = p_comm_params->rts_pin_no;
config.pselrxd = p_comm_params->rx_pin_no;
config.pseltxd = p_comm_params->tx_pin_no;
err_code = nrf_drv_uart_init(&config, uart_event_handler);
VERIFY_SUCCESS(err_code);
#ifdef NRF52
if (!config.use_easy_dma)
#endif
{
nrf_drv_uart_rx_enable();
}
return nrf_drv_uart_rx(rx_buffer,1);
}
uint32_t app_uart_flush(void)
{
uint32_t err_code;
err_code = app_fifo_flush(&m_rx_fifo);
VERIFY_SUCCESS(err_code);
err_code = app_fifo_flush(&m_tx_fifo);
VERIFY_SUCCESS(err_code);
return NRF_SUCCESS;
}
uint32_t app_uart_get(uint8_t * p_byte)
{
ASSERT(p_byte);
// If FIFO was full new request to receive one byte was not scheduled. Must be done here.
if (FIFO_LENGTH(m_rx_fifo) == m_rx_fifo.buf_size_mask)
{
uint32_t err_code = nrf_drv_uart_rx(rx_buffer,1);
if (err_code != NRF_SUCCESS)
{
return NRF_ERROR_NOT_FOUND;
}
}
return app_fifo_get(&m_rx_fifo, p_byte);
}
uint32_t app_uart_put(uint8_t byte)
{
uint32_t err_code;
err_code = app_fifo_put(&m_tx_fifo, byte);
if (err_code == NRF_SUCCESS)
{
// The new byte has been added to FIFO. It will be picked up from there
// (in 'uart_event_handler') when all preceding bytes are transmitted.
// But if UART is not transmitting anything at the moment, we must start
// a new transmission here.
if (!nrf_drv_uart_tx_in_progress())
{
// This operation should be almost always successful, since we've
// just added a byte to FIFO, but if some bigger delay occurred
// (some heavy interrupt handler routine has been executed) since
// that time, FIFO might be empty already.
if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
{
err_code = nrf_drv_uart_tx(tx_buffer, 1);
}
}
}
return err_code;
}
uint32_t app_uart_close(void)
{
nrf_drv_uart_uninit();
return NRF_SUCCESS;
}