/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ #include "app_uart.h" #include "app_fifo.h" #include "nrf_drv_uart.h" #include "nrf_assert.h" #include "sdk_common.h" static __INLINE uint32_t fifo_length(app_fifo_t * const fifo) { uint32_t tmp = fifo->read_pos; return fifo->write_pos - tmp; } #define FIFO_LENGTH(F) fifo_length(&F) /**< Macro to calculate length of a FIFO. */ static app_uart_event_handler_t m_event_handler; /**< Event handler function. */ static uint8_t tx_buffer[1]; static uint8_t rx_buffer[1]; static app_fifo_t m_rx_fifo; /**< RX FIFO buffer for storing data received on the UART until the application fetches them using app_uart_get(). */ static app_fifo_t m_tx_fifo; /**< TX FIFO buffer for storing data to be transmitted on the UART when TXD is ready. Data is put to the buffer on using app_uart_put(). */ static void uart_event_handler(nrf_drv_uart_event_t * p_event, void* p_context) { app_uart_evt_t app_uart_event; if (p_event->type == NRF_DRV_UART_EVT_RX_DONE) { // Write received byte to FIFO uint32_t err_code = app_fifo_put(&m_rx_fifo, p_event->data.rxtx.p_data[0]); if (err_code != NRF_SUCCESS) { app_uart_event.evt_type = APP_UART_FIFO_ERROR; app_uart_event.data.error_code = err_code; m_event_handler(&app_uart_event); } // Notify that new data is available if this was first byte put in the buffer. else if (FIFO_LENGTH(m_rx_fifo) == 1) { app_uart_event.evt_type = APP_UART_DATA_READY; m_event_handler(&app_uart_event); } else { // Do nothing, only send event if first byte was added or overflow in FIFO occurred. } if (FIFO_LENGTH(m_rx_fifo) <= m_rx_fifo.buf_size_mask) { (void)nrf_drv_uart_rx(rx_buffer, 1); } } else if (p_event->type == NRF_DRV_UART_EVT_ERROR) { app_uart_event.evt_type = APP_UART_COMMUNICATION_ERROR; app_uart_event.data.error_communication = p_event->data.error.error_mask; (void)nrf_drv_uart_rx(rx_buffer, 1); m_event_handler(&app_uart_event); } else if (p_event->type == NRF_DRV_UART_EVT_TX_DONE) { // Get next byte from FIFO. if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS) { (void)nrf_drv_uart_tx(tx_buffer, 1); } if (FIFO_LENGTH(m_tx_fifo) == 0) { // Last byte from FIFO transmitted, notify the application. app_uart_event.evt_type = APP_UART_TX_EMPTY; m_event_handler(&app_uart_event); } } } uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params, app_uart_buffers_t * p_buffers, app_uart_event_handler_t event_handler, app_irq_priority_t irq_priority) { uint32_t err_code; m_event_handler = event_handler; if (p_buffers == NULL) { return NRF_ERROR_INVALID_PARAM; } // Configure buffer RX buffer. err_code = app_fifo_init(&m_rx_fifo, p_buffers->rx_buf, p_buffers->rx_buf_size); VERIFY_SUCCESS(err_code); // Configure buffer TX buffer. err_code = app_fifo_init(&m_tx_fifo, p_buffers->tx_buf, p_buffers->tx_buf_size); VERIFY_SUCCESS(err_code); nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG; config.baudrate = (nrf_uart_baudrate_t)p_comm_params->baud_rate; config.hwfc = (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_DISABLED) ? NRF_UART_HWFC_DISABLED : NRF_UART_HWFC_ENABLED; config.interrupt_priority = irq_priority; config.parity = p_comm_params->use_parity ? NRF_UART_PARITY_INCLUDED : NRF_UART_PARITY_EXCLUDED; config.pselcts = p_comm_params->cts_pin_no; config.pselrts = p_comm_params->rts_pin_no; config.pselrxd = p_comm_params->rx_pin_no; config.pseltxd = p_comm_params->tx_pin_no; err_code = nrf_drv_uart_init(&config, uart_event_handler); VERIFY_SUCCESS(err_code); #ifdef NRF52 if (!config.use_easy_dma) #endif { nrf_drv_uart_rx_enable(); } return nrf_drv_uart_rx(rx_buffer,1); } uint32_t app_uart_flush(void) { uint32_t err_code; err_code = app_fifo_flush(&m_rx_fifo); VERIFY_SUCCESS(err_code); err_code = app_fifo_flush(&m_tx_fifo); VERIFY_SUCCESS(err_code); return NRF_SUCCESS; } uint32_t app_uart_get(uint8_t * p_byte) { ASSERT(p_byte); // If FIFO was full new request to receive one byte was not scheduled. Must be done here. if (FIFO_LENGTH(m_rx_fifo) == m_rx_fifo.buf_size_mask) { uint32_t err_code = nrf_drv_uart_rx(rx_buffer,1); if (err_code != NRF_SUCCESS) { return NRF_ERROR_NOT_FOUND; } } return app_fifo_get(&m_rx_fifo, p_byte); } uint32_t app_uart_put(uint8_t byte) { uint32_t err_code; err_code = app_fifo_put(&m_tx_fifo, byte); if (err_code == NRF_SUCCESS) { // The new byte has been added to FIFO. It will be picked up from there // (in 'uart_event_handler') when all preceding bytes are transmitted. // But if UART is not transmitting anything at the moment, we must start // a new transmission here. if (!nrf_drv_uart_tx_in_progress()) { // This operation should be almost always successful, since we've // just added a byte to FIFO, but if some bigger delay occurred // (some heavy interrupt handler routine has been executed) since // that time, FIFO might be empty already. if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS) { err_code = nrf_drv_uart_tx(tx_buffer, 1); } } } return err_code; } uint32_t app_uart_close(void) { nrf_drv_uart_uninit(); return NRF_SUCCESS; }