simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/ble/common/ble_advdata.c

762 lines
26 KiB
C

/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "ble_advdata.h"
#include "ble_gap.h"
#include "ble_srv_common.h"
#include "sdk_common.h"
// NOTE: For now, Security Manager Out of Band Flags (OOB) are omitted from the advertising data.
// Types of LE Bluetooth Device Address AD type
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC 0UL
#define AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM 1UL
static uint32_t tk_value_encode(ble_advdata_tk_value_t * p_tk_value,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
int8_t i;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_TK_VALUE_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode LE Role.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_TK_VALUE_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SECURITY_MANAGER_TK_VALUE;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
for (i = AD_TYPE_TK_VALUE_DATA_SIZE - 1; i >= 0; i--, (*p_offset)++)
{
p_encoded_data[*p_offset] = p_tk_value->tk[i];
}
return NRF_SUCCESS;
}
static uint32_t le_role_encode(ble_advdata_le_role_t le_role,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_LE_ROLE_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode LE Role.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_LE_ROLE_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_LE_ROLE;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
switch(le_role)
{
case BLE_ADVDATA_ROLE_ONLY_PERIPH:
p_encoded_data[*p_offset] = 0;
break;
case BLE_ADVDATA_ROLE_ONLY_CENTRAL:
p_encoded_data[*p_offset] = 1;
break;
case BLE_ADVDATA_ROLE_BOTH_PERIPH_PREFERRED:
p_encoded_data[*p_offset] = 2;
break;
case BLE_ADVDATA_ROLE_BOTH_CENTRAL_PREFERRED:
p_encoded_data[*p_offset] = 3;
break;
default:
return NRF_ERROR_INVALID_PARAM;
}
*p_offset += AD_TYPE_LE_ROLE_DATA_SIZE;
return NRF_SUCCESS;
}
static uint32_t ble_device_addr_encode(uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t err_code;
ble_gap_addr_t device_addr;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_BLE_DEVICE_ADDR_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Get BLE address
err_code = sd_ble_gap_addr_get(&device_addr);
VERIFY_SUCCESS(err_code);
// Encode LE Bluetooth Device Address
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE +
AD_TYPE_BLE_DEVICE_ADDR_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_LE_BLUETOOTH_DEVICE_ADDRESS;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
memcpy(&p_encoded_data[*p_offset], &device_addr.addr[0], BLE_GAP_ADDR_LEN);
*p_offset += BLE_GAP_ADDR_LEN;
if(BLE_GAP_ADDR_TYPE_PUBLIC == device_addr.addr_type)
{
p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC;
}
else
{
p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM;
}
*p_offset += AD_TYPE_BLE_DEVICE_ADDR_TYPE_SIZE;
return NRF_SUCCESS;
}
static uint32_t name_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t err_code;
uint16_t rem_adv_data_len;
uint16_t actual_length;
uint8_t adv_data_format;
// Validate parameters
if((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (0 == p_advdata->short_name_len))
{
return NRF_ERROR_INVALID_PARAM;
}
// Check for buffer overflow.
if ( (((*p_offset) + ADV_AD_DATA_OFFSET) > max_size) ||
( (BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
(((*p_offset) + ADV_AD_DATA_OFFSET + p_advdata->short_name_len) > max_size)))
{
return NRF_ERROR_DATA_SIZE;
}
rem_adv_data_len = max_size - (*p_offset) - ADV_AD_DATA_OFFSET;
actual_length = rem_adv_data_len;
// Get GAP device name and length
err_code = sd_ble_gap_device_name_get(&p_encoded_data[(*p_offset) + ADV_AD_DATA_OFFSET],
&actual_length);
VERIFY_SUCCESS(err_code);
// Check if device intend to use short name and it can fit available data size.
if ((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) && (actual_length <= rem_adv_data_len))
{
// Complete device name can fit, setting Complete Name in Adv Data.
adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME;
}
else
{
// Else short name needs to be used. Or application has requested use of short name.
adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME;
// If application has set a preference on the short name size, it needs to be considered,
// else fit what can be fit.
if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) &&
(p_advdata->short_name_len <= rem_adv_data_len))
{
// Short name fits available size.
actual_length = p_advdata->short_name_len;
}
// Else whatever can fit the data buffer will be packed.
else
{
actual_length = rem_adv_data_len;
}
}
// There is only 1 byte intended to encode length which is (actual_length + ADV_AD_TYPE_FIELD_SIZE)
if(actual_length > (0x00FF - ADV_AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Complete name field in encoded data.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + actual_length);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = adv_data_format;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
*p_offset += actual_length;
return NRF_SUCCESS;
}
static uint32_t appearance_encode(uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t err_code;
uint16_t appearance;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_APPEARANCE_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Get GAP appearance field.
err_code = sd_ble_gap_appearance_get(&appearance);
VERIFY_SUCCESS(err_code);
// Encode Length, AD Type and Appearance.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_APPEARANCE_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_APPEARANCE;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
*p_offset += uint16_encode(appearance, &p_encoded_data[*p_offset]);
return NRF_SUCCESS;
}
static uint32_t flags_encode(int8_t flags,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_FLAGS_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode flags.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_FLAGS_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_FLAGS;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
p_encoded_data[*p_offset] = flags;
*p_offset += AD_TYPE_FLAGS_DATA_SIZE;
return NRF_SUCCESS;
}
static uint32_t sec_mgr_oob_flags_encode(uint8_t oob_flags,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_OOB_FLAGS_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode flags.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_OOB_FLAGS_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SECURITY_MANAGER_OOB_FLAGS;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
p_encoded_data[*p_offset] = oob_flags;
*p_offset += AD_TYPE_OOB_FLAGS_DATA_SIZE;
return NRF_SUCCESS;
}
static uint32_t tx_power_level_encode(int8_t tx_power_level,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_TX_POWER_LEVEL_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode TX Power Level.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE +
AD_TYPE_TX_POWER_LEVEL_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_TX_POWER_LEVEL;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
p_encoded_data[*p_offset] = tx_power_level;
*p_offset += AD_TYPE_TX_POWER_LEVEL_DATA_SIZE;
return NRF_SUCCESS;
}
static uint32_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type,
uint8_t uuid_size,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
int i;
bool is_heading_written = false;
uint16_t start_pos = *p_offset;
uint16_t length;
for (i = 0; i < p_uuid_list->uuid_cnt; i++)
{
uint32_t err_code;
uint8_t encoded_size;
ble_uuid_t uuid = p_uuid_list->p_uuids[i];
// Find encoded uuid size.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL);
VERIFY_SUCCESS(err_code);
// Check size.
if (encoded_size == uuid_size)
{
uint8_t heading_bytes = (is_heading_written) ? 0 : ADV_AD_DATA_OFFSET;
// Check for buffer overflow
if (((*p_offset) + encoded_size + heading_bytes) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
if (!is_heading_written)
{
// Write AD structure heading.
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = adv_type;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
is_heading_written = true;
}
// Write UUID.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_offset]);
VERIFY_SUCCESS(err_code);
*p_offset += encoded_size;
}
}
if (is_heading_written)
{
// Write length.
length = (*p_offset) - (start_pos + ADV_LENGTH_FIELD_SIZE);
// There is only 1 byte intended to encode length
if(length > 0x00FF)
{
return NRF_ERROR_DATA_SIZE;
}
p_encoded_data[start_pos] = (uint8_t)length;
}
return NRF_SUCCESS;
}
static uint32_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type_16,
uint8_t adv_type_128,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t err_code;
// Encode 16 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_16,
sizeof(uint16_le_t),
p_encoded_data,
p_offset,
max_size);
VERIFY_SUCCESS(err_code);
// Encode 128 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_128,
sizeof(ble_uuid128_t),
p_encoded_data,
p_offset,
max_size);
VERIFY_SUCCESS(err_code);
return NRF_SUCCESS;
}
static uint32_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int)
{
// Check Minimum Connection Interval.
if ((p_conn_int->min_conn_interval < 0x0006) ||
(
(p_conn_int->min_conn_interval > 0x0c80) &&
(p_conn_int->min_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Check Maximum Connection Interval.
if ((p_conn_int->max_conn_interval < 0x0006) ||
(
(p_conn_int->max_conn_interval > 0x0c80) &&
(p_conn_int->max_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval.
if ((p_conn_int->min_conn_interval != 0xffff) &&
(p_conn_int->max_conn_interval != 0xffff) &&
(p_conn_int->min_conn_interval > p_conn_int->max_conn_interval)
)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
static uint32_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t err_code;
// Check for buffer overflow.
if (((*p_offset) + AD_TYPE_CONN_INT_SIZE) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// Check parameters.
err_code = conn_int_check(p_conn_int);
VERIFY_SUCCESS(err_code);
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_CONN_INT_DATA_SIZE);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
// Encode Minimum and Maximum Connection Intervals.
*p_offset += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_offset]);
*p_offset += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_offset]);
return NRF_SUCCESS;
}
static uint32_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint32_t data_size = AD_TYPE_MANUF_SPEC_DATA_ID_SIZE + p_manuf_sp_data->data.size;
// Check for buffer overflow.
if (((*p_offset) + ADV_AD_DATA_OFFSET + data_size) > max_size)
{
return NRF_ERROR_DATA_SIZE;
}
// There is only 1 byte intended to encode length which is (data_size + ADV_AD_TYPE_FIELD_SIZE)
if(data_size > (0x00FF - ADV_AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + data_size);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
// Encode Company Identifier.
*p_offset += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_offset]);
// Encode additional manufacturer specific data.
if (p_manuf_sp_data->data.size > 0)
{
if (p_manuf_sp_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_offset], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size);
*p_offset += p_manuf_sp_data->data.size;
}
return NRF_SUCCESS;
}
// Implemented only for 16-bit UUIDs
static uint32_t service_data_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint16_t * p_offset,
uint16_t max_size)
{
uint8_t i;
// Check parameter consistency.
if (p_advdata->p_service_data_array == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
for (i = 0; i < p_advdata->service_data_count; i++)
{
ble_advdata_service_data_t * p_service_data;
uint32_t data_size;
p_service_data = &p_advdata->p_service_data_array[i];
// For now implemented only for 16-bit UUIDs
data_size = AD_TYPE_SERV_DATA_16BIT_UUID_SIZE + p_service_data->data.size;
// There is only 1 byte intended to encode length which is (data_size + ADV_AD_TYPE_FIELD_SIZE)
if(data_size > (0x00FF - ADV_AD_TYPE_FIELD_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + data_size);
*p_offset += ADV_LENGTH_FIELD_SIZE;
p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SERVICE_DATA;
*p_offset += ADV_AD_TYPE_FIELD_SIZE;
// Encode service 16-bit UUID.
*p_offset += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_offset]);
// Encode additional service data.
if (p_service_data->data.size > 0)
{
if (p_service_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_offset], p_service_data->data.p_data, p_service_data->data.size);
*p_offset += p_service_data->data.size;
}
}
return NRF_SUCCESS;
}
uint32_t adv_data_encode(ble_advdata_t const * const p_advdata,
uint8_t * const p_encoded_data,
uint16_t * const p_len)
{
uint32_t err_code = NRF_SUCCESS;
uint16_t max_size = *p_len;
*p_len = 0;
//Encode Security Manager OOB Flags
if (p_advdata->p_sec_mgr_oob_flags != NULL)
{
err_code = sec_mgr_oob_flags_encode(*p_advdata->p_sec_mgr_oob_flags,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Security Manager TK value
if (NULL != p_advdata->p_tk_value)
{
err_code = tk_value_encode(p_advdata->p_tk_value, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode LE Role
if (BLE_ADVDATA_ROLE_NOT_PRESENT != p_advdata->le_role)
{
err_code = le_role_encode(p_advdata->le_role, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode LE Bluetooth Device Address
if (p_advdata->include_ble_device_addr)
{
err_code = ble_device_addr_encode(p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode appearance.
if (p_advdata->include_appearance)
{
err_code = appearance_encode(p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
//Encode Flags
if(p_advdata->flags != 0 )
{
err_code = flags_encode(p_advdata->flags, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode TX power level.
if (p_advdata->p_tx_power_level != NULL)
{
err_code = tx_power_level_encode(*p_advdata->p_tx_power_level,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'more available' uuid list.
if (p_advdata->uuids_more_available.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_more_available,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'complete' uuid list.
if (p_advdata->uuids_complete.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_complete,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode 'solicited service' uuid list.
if (p_advdata->uuids_solicited.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_solicited,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Slave Connection Interval Range.
if (p_advdata->p_slave_conn_int != NULL)
{
err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Manufacturer Specific Data.
if (p_advdata->p_manuf_specific_data != NULL)
{
err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data,
p_encoded_data,
p_len,
max_size);
VERIFY_SUCCESS(err_code);
}
// Encode Service Data.
if (p_advdata->service_data_count > 0)
{
err_code = service_data_encode(p_advdata, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
// Encode name. WARNING: it is encoded last on purpose since too long device name is truncated.
if (p_advdata->name_type != BLE_ADVDATA_NO_NAME)
{
err_code = name_encode(p_advdata, p_encoded_data, p_len, max_size);
VERIFY_SUCCESS(err_code);
}
return err_code;
}
static uint32_t advdata_check(const ble_advdata_t * p_advdata)
{
// Flags must be included in advertising data, and the BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED flag must be set.
if (
((p_advdata->flags & BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED) == 0)
)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
static uint32_t srdata_check(const ble_advdata_t * p_srdata)
{
// Flags shall not be included in the scan response data.
if (p_srdata->flags)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
uint32_t ble_advdata_set(const ble_advdata_t * p_advdata, const ble_advdata_t * p_srdata)
{
uint32_t err_code;
uint16_t len_advdata = BLE_GAP_ADV_MAX_SIZE;
uint16_t len_srdata = BLE_GAP_ADV_MAX_SIZE;
uint8_t encoded_advdata[BLE_GAP_ADV_MAX_SIZE];
uint8_t encoded_srdata[BLE_GAP_ADV_MAX_SIZE];
uint8_t * p_encoded_advdata;
uint8_t * p_encoded_srdata;
// Encode advertising data (if supplied).
if (p_advdata != NULL)
{
err_code = advdata_check(p_advdata);
VERIFY_SUCCESS(err_code);
err_code = adv_data_encode(p_advdata, encoded_advdata, &len_advdata);
VERIFY_SUCCESS(err_code);
p_encoded_advdata = encoded_advdata;
}
else
{
p_encoded_advdata = NULL;
len_advdata = 0;
}
// Encode scan response data (if supplied).
if (p_srdata != NULL)
{
err_code = srdata_check(p_srdata);
VERIFY_SUCCESS(err_code);
err_code = adv_data_encode(p_srdata, encoded_srdata, &len_srdata);
VERIFY_SUCCESS(err_code);
p_encoded_srdata = encoded_srdata;
}
else
{
p_encoded_srdata = NULL;
len_srdata = 0;
}
// Pass encoded advertising data and/or scan response data to the stack.
return sd_ble_gap_adv_data_set(p_encoded_advdata, len_advdata, p_encoded_srdata, len_srdata);
}