/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ #include "ble_advdata.h" #include "ble_gap.h" #include "ble_srv_common.h" #include "sdk_common.h" // NOTE: For now, Security Manager Out of Band Flags (OOB) are omitted from the advertising data. // Types of LE Bluetooth Device Address AD type #define AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC 0UL #define AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM 1UL static uint32_t tk_value_encode(ble_advdata_tk_value_t * p_tk_value, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { int8_t i; // Check for buffer overflow. if (((*p_offset) + AD_TYPE_TK_VALUE_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Encode LE Role. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_TK_VALUE_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SECURITY_MANAGER_TK_VALUE; *p_offset += ADV_AD_TYPE_FIELD_SIZE; for (i = AD_TYPE_TK_VALUE_DATA_SIZE - 1; i >= 0; i--, (*p_offset)++) { p_encoded_data[*p_offset] = p_tk_value->tk[i]; } return NRF_SUCCESS; } static uint32_t le_role_encode(ble_advdata_le_role_t le_role, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { // Check for buffer overflow. if (((*p_offset) + AD_TYPE_LE_ROLE_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Encode LE Role. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_LE_ROLE_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_LE_ROLE; *p_offset += ADV_AD_TYPE_FIELD_SIZE; switch(le_role) { case BLE_ADVDATA_ROLE_ONLY_PERIPH: p_encoded_data[*p_offset] = 0; break; case BLE_ADVDATA_ROLE_ONLY_CENTRAL: p_encoded_data[*p_offset] = 1; break; case BLE_ADVDATA_ROLE_BOTH_PERIPH_PREFERRED: p_encoded_data[*p_offset] = 2; break; case BLE_ADVDATA_ROLE_BOTH_CENTRAL_PREFERRED: p_encoded_data[*p_offset] = 3; break; default: return NRF_ERROR_INVALID_PARAM; } *p_offset += AD_TYPE_LE_ROLE_DATA_SIZE; return NRF_SUCCESS; } static uint32_t ble_device_addr_encode(uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t err_code; ble_gap_addr_t device_addr; // Check for buffer overflow. if (((*p_offset) + AD_TYPE_BLE_DEVICE_ADDR_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Get BLE address err_code = sd_ble_gap_addr_get(&device_addr); VERIFY_SUCCESS(err_code); // Encode LE Bluetooth Device Address p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_BLE_DEVICE_ADDR_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_LE_BLUETOOTH_DEVICE_ADDRESS; *p_offset += ADV_AD_TYPE_FIELD_SIZE; memcpy(&p_encoded_data[*p_offset], &device_addr.addr[0], BLE_GAP_ADDR_LEN); *p_offset += BLE_GAP_ADDR_LEN; if(BLE_GAP_ADDR_TYPE_PUBLIC == device_addr.addr_type) { p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_PUBLIC; } else { p_encoded_data[*p_offset] = AD_TYPE_BLE_DEVICE_ADDR_TYPE_RANDOM; } *p_offset += AD_TYPE_BLE_DEVICE_ADDR_TYPE_SIZE; return NRF_SUCCESS; } static uint32_t name_encode(const ble_advdata_t * p_advdata, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t err_code; uint16_t rem_adv_data_len; uint16_t actual_length; uint8_t adv_data_format; // Validate parameters if((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (0 == p_advdata->short_name_len)) { return NRF_ERROR_INVALID_PARAM; } // Check for buffer overflow. if ( (((*p_offset) + ADV_AD_DATA_OFFSET) > max_size) || ( (BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (((*p_offset) + ADV_AD_DATA_OFFSET + p_advdata->short_name_len) > max_size))) { return NRF_ERROR_DATA_SIZE; } rem_adv_data_len = max_size - (*p_offset) - ADV_AD_DATA_OFFSET; actual_length = rem_adv_data_len; // Get GAP device name and length err_code = sd_ble_gap_device_name_get(&p_encoded_data[(*p_offset) + ADV_AD_DATA_OFFSET], &actual_length); VERIFY_SUCCESS(err_code); // Check if device intend to use short name and it can fit available data size. if ((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) && (actual_length <= rem_adv_data_len)) { // Complete device name can fit, setting Complete Name in Adv Data. adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME; } else { // Else short name needs to be used. Or application has requested use of short name. adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME; // If application has set a preference on the short name size, it needs to be considered, // else fit what can be fit. if ((BLE_ADVDATA_SHORT_NAME == p_advdata->name_type) && (p_advdata->short_name_len <= rem_adv_data_len)) { // Short name fits available size. actual_length = p_advdata->short_name_len; } // Else whatever can fit the data buffer will be packed. else { actual_length = rem_adv_data_len; } } // There is only 1 byte intended to encode length which is (actual_length + ADV_AD_TYPE_FIELD_SIZE) if(actual_length > (0x00FF - ADV_AD_TYPE_FIELD_SIZE)) { return NRF_ERROR_DATA_SIZE; } // Complete name field in encoded data. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + actual_length); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = adv_data_format; *p_offset += ADV_AD_TYPE_FIELD_SIZE; *p_offset += actual_length; return NRF_SUCCESS; } static uint32_t appearance_encode(uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t err_code; uint16_t appearance; // Check for buffer overflow. if (((*p_offset) + AD_TYPE_APPEARANCE_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Get GAP appearance field. err_code = sd_ble_gap_appearance_get(&appearance); VERIFY_SUCCESS(err_code); // Encode Length, AD Type and Appearance. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_APPEARANCE_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_APPEARANCE; *p_offset += ADV_AD_TYPE_FIELD_SIZE; *p_offset += uint16_encode(appearance, &p_encoded_data[*p_offset]); return NRF_SUCCESS; } static uint32_t flags_encode(int8_t flags, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { // Check for buffer overflow. if (((*p_offset) + AD_TYPE_FLAGS_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Encode flags. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_FLAGS_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_FLAGS; *p_offset += ADV_AD_TYPE_FIELD_SIZE; p_encoded_data[*p_offset] = flags; *p_offset += AD_TYPE_FLAGS_DATA_SIZE; return NRF_SUCCESS; } static uint32_t sec_mgr_oob_flags_encode(uint8_t oob_flags, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { // Check for buffer overflow. if (((*p_offset) + AD_TYPE_OOB_FLAGS_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Encode flags. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_OOB_FLAGS_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SECURITY_MANAGER_OOB_FLAGS; *p_offset += ADV_AD_TYPE_FIELD_SIZE; p_encoded_data[*p_offset] = oob_flags; *p_offset += AD_TYPE_OOB_FLAGS_DATA_SIZE; return NRF_SUCCESS; } static uint32_t tx_power_level_encode(int8_t tx_power_level, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { // Check for buffer overflow. if (((*p_offset) + AD_TYPE_TX_POWER_LEVEL_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Encode TX Power Level. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_TX_POWER_LEVEL_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_TX_POWER_LEVEL; *p_offset += ADV_AD_TYPE_FIELD_SIZE; p_encoded_data[*p_offset] = tx_power_level; *p_offset += AD_TYPE_TX_POWER_LEVEL_DATA_SIZE; return NRF_SUCCESS; } static uint32_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list, uint8_t adv_type, uint8_t uuid_size, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { int i; bool is_heading_written = false; uint16_t start_pos = *p_offset; uint16_t length; for (i = 0; i < p_uuid_list->uuid_cnt; i++) { uint32_t err_code; uint8_t encoded_size; ble_uuid_t uuid = p_uuid_list->p_uuids[i]; // Find encoded uuid size. err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL); VERIFY_SUCCESS(err_code); // Check size. if (encoded_size == uuid_size) { uint8_t heading_bytes = (is_heading_written) ? 0 : ADV_AD_DATA_OFFSET; // Check for buffer overflow if (((*p_offset) + encoded_size + heading_bytes) > max_size) { return NRF_ERROR_DATA_SIZE; } if (!is_heading_written) { // Write AD structure heading. *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = adv_type; *p_offset += ADV_AD_TYPE_FIELD_SIZE; is_heading_written = true; } // Write UUID. err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_offset]); VERIFY_SUCCESS(err_code); *p_offset += encoded_size; } } if (is_heading_written) { // Write length. length = (*p_offset) - (start_pos + ADV_LENGTH_FIELD_SIZE); // There is only 1 byte intended to encode length if(length > 0x00FF) { return NRF_ERROR_DATA_SIZE; } p_encoded_data[start_pos] = (uint8_t)length; } return NRF_SUCCESS; } static uint32_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list, uint8_t adv_type_16, uint8_t adv_type_128, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t err_code; // Encode 16 bit UUIDs. err_code = uuid_list_sized_encode(p_uuid_list, adv_type_16, sizeof(uint16_le_t), p_encoded_data, p_offset, max_size); VERIFY_SUCCESS(err_code); // Encode 128 bit UUIDs. err_code = uuid_list_sized_encode(p_uuid_list, adv_type_128, sizeof(ble_uuid128_t), p_encoded_data, p_offset, max_size); VERIFY_SUCCESS(err_code); return NRF_SUCCESS; } static uint32_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int) { // Check Minimum Connection Interval. if ((p_conn_int->min_conn_interval < 0x0006) || ( (p_conn_int->min_conn_interval > 0x0c80) && (p_conn_int->min_conn_interval != 0xffff) ) ) { return NRF_ERROR_INVALID_PARAM; } // Check Maximum Connection Interval. if ((p_conn_int->max_conn_interval < 0x0006) || ( (p_conn_int->max_conn_interval > 0x0c80) && (p_conn_int->max_conn_interval != 0xffff) ) ) { return NRF_ERROR_INVALID_PARAM; } // Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval. if ((p_conn_int->min_conn_interval != 0xffff) && (p_conn_int->max_conn_interval != 0xffff) && (p_conn_int->min_conn_interval > p_conn_int->max_conn_interval) ) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } static uint32_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t err_code; // Check for buffer overflow. if (((*p_offset) + AD_TYPE_CONN_INT_SIZE) > max_size) { return NRF_ERROR_DATA_SIZE; } // Check parameters. err_code = conn_int_check(p_conn_int); VERIFY_SUCCESS(err_code); // Encode Length and AD Type. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + AD_TYPE_CONN_INT_DATA_SIZE); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE; *p_offset += ADV_AD_TYPE_FIELD_SIZE; // Encode Minimum and Maximum Connection Intervals. *p_offset += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_offset]); *p_offset += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_offset]); return NRF_SUCCESS; } static uint32_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint32_t data_size = AD_TYPE_MANUF_SPEC_DATA_ID_SIZE + p_manuf_sp_data->data.size; // Check for buffer overflow. if (((*p_offset) + ADV_AD_DATA_OFFSET + data_size) > max_size) { return NRF_ERROR_DATA_SIZE; } // There is only 1 byte intended to encode length which is (data_size + ADV_AD_TYPE_FIELD_SIZE) if(data_size > (0x00FF - ADV_AD_TYPE_FIELD_SIZE)) { return NRF_ERROR_DATA_SIZE; } // Encode Length and AD Type. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + data_size); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA; *p_offset += ADV_AD_TYPE_FIELD_SIZE; // Encode Company Identifier. *p_offset += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_offset]); // Encode additional manufacturer specific data. if (p_manuf_sp_data->data.size > 0) { if (p_manuf_sp_data->data.p_data == NULL) { return NRF_ERROR_INVALID_PARAM; } memcpy(&p_encoded_data[*p_offset], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size); *p_offset += p_manuf_sp_data->data.size; } return NRF_SUCCESS; } // Implemented only for 16-bit UUIDs static uint32_t service_data_encode(const ble_advdata_t * p_advdata, uint8_t * p_encoded_data, uint16_t * p_offset, uint16_t max_size) { uint8_t i; // Check parameter consistency. if (p_advdata->p_service_data_array == NULL) { return NRF_ERROR_INVALID_PARAM; } for (i = 0; i < p_advdata->service_data_count; i++) { ble_advdata_service_data_t * p_service_data; uint32_t data_size; p_service_data = &p_advdata->p_service_data_array[i]; // For now implemented only for 16-bit UUIDs data_size = AD_TYPE_SERV_DATA_16BIT_UUID_SIZE + p_service_data->data.size; // There is only 1 byte intended to encode length which is (data_size + ADV_AD_TYPE_FIELD_SIZE) if(data_size > (0x00FF - ADV_AD_TYPE_FIELD_SIZE)) { return NRF_ERROR_DATA_SIZE; } // Encode Length and AD Type. p_encoded_data[*p_offset] = (uint8_t)(ADV_AD_TYPE_FIELD_SIZE + data_size); *p_offset += ADV_LENGTH_FIELD_SIZE; p_encoded_data[*p_offset] = BLE_GAP_AD_TYPE_SERVICE_DATA; *p_offset += ADV_AD_TYPE_FIELD_SIZE; // Encode service 16-bit UUID. *p_offset += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_offset]); // Encode additional service data. if (p_service_data->data.size > 0) { if (p_service_data->data.p_data == NULL) { return NRF_ERROR_INVALID_PARAM; } memcpy(&p_encoded_data[*p_offset], p_service_data->data.p_data, p_service_data->data.size); *p_offset += p_service_data->data.size; } } return NRF_SUCCESS; } uint32_t adv_data_encode(ble_advdata_t const * const p_advdata, uint8_t * const p_encoded_data, uint16_t * const p_len) { uint32_t err_code = NRF_SUCCESS; uint16_t max_size = *p_len; *p_len = 0; //Encode Security Manager OOB Flags if (p_advdata->p_sec_mgr_oob_flags != NULL) { err_code = sec_mgr_oob_flags_encode(*p_advdata->p_sec_mgr_oob_flags, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode Security Manager TK value if (NULL != p_advdata->p_tk_value) { err_code = tk_value_encode(p_advdata->p_tk_value, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode LE Role if (BLE_ADVDATA_ROLE_NOT_PRESENT != p_advdata->le_role) { err_code = le_role_encode(p_advdata->le_role, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode LE Bluetooth Device Address if (p_advdata->include_ble_device_addr) { err_code = ble_device_addr_encode(p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode appearance. if (p_advdata->include_appearance) { err_code = appearance_encode(p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } //Encode Flags if(p_advdata->flags != 0 ) { err_code = flags_encode(p_advdata->flags, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode TX power level. if (p_advdata->p_tx_power_level != NULL) { err_code = tx_power_level_encode(*p_advdata->p_tx_power_level, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode 'more available' uuid list. if (p_advdata->uuids_more_available.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_more_available, BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE, BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode 'complete' uuid list. if (p_advdata->uuids_complete.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_complete, BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE, BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode 'solicited service' uuid list. if (p_advdata->uuids_solicited.uuid_cnt > 0) { err_code = uuid_list_encode(&p_advdata->uuids_solicited, BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT, BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode Slave Connection Interval Range. if (p_advdata->p_slave_conn_int != NULL) { err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode Manufacturer Specific Data. if (p_advdata->p_manuf_specific_data != NULL) { err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode Service Data. if (p_advdata->service_data_count > 0) { err_code = service_data_encode(p_advdata, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } // Encode name. WARNING: it is encoded last on purpose since too long device name is truncated. if (p_advdata->name_type != BLE_ADVDATA_NO_NAME) { err_code = name_encode(p_advdata, p_encoded_data, p_len, max_size); VERIFY_SUCCESS(err_code); } return err_code; } static uint32_t advdata_check(const ble_advdata_t * p_advdata) { // Flags must be included in advertising data, and the BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED flag must be set. if ( ((p_advdata->flags & BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED) == 0) ) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } static uint32_t srdata_check(const ble_advdata_t * p_srdata) { // Flags shall not be included in the scan response data. if (p_srdata->flags) { return NRF_ERROR_INVALID_PARAM; } return NRF_SUCCESS; } uint32_t ble_advdata_set(const ble_advdata_t * p_advdata, const ble_advdata_t * p_srdata) { uint32_t err_code; uint16_t len_advdata = BLE_GAP_ADV_MAX_SIZE; uint16_t len_srdata = BLE_GAP_ADV_MAX_SIZE; uint8_t encoded_advdata[BLE_GAP_ADV_MAX_SIZE]; uint8_t encoded_srdata[BLE_GAP_ADV_MAX_SIZE]; uint8_t * p_encoded_advdata; uint8_t * p_encoded_srdata; // Encode advertising data (if supplied). if (p_advdata != NULL) { err_code = advdata_check(p_advdata); VERIFY_SUCCESS(err_code); err_code = adv_data_encode(p_advdata, encoded_advdata, &len_advdata); VERIFY_SUCCESS(err_code); p_encoded_advdata = encoded_advdata; } else { p_encoded_advdata = NULL; len_advdata = 0; } // Encode scan response data (if supplied). if (p_srdata != NULL) { err_code = srdata_check(p_srdata); VERIFY_SUCCESS(err_code); err_code = adv_data_encode(p_srdata, encoded_srdata, &len_srdata); VERIFY_SUCCESS(err_code); p_encoded_srdata = encoded_srdata; } else { p_encoded_srdata = NULL; len_srdata = 0; } // Pass encoded advertising data and/or scan response data to the stack. return sd_ble_gap_adv_data_set(p_encoded_advdata, len_advdata, p_encoded_srdata, len_srdata); }