add files from nrf52832 bootloader project

This commit is contained in:
hathach
2018-02-07 23:32:49 +07:00
parent ac1f0e7955
commit 9f1d9f321e
186 changed files with 83021 additions and 0 deletions

View File

@ -0,0 +1,227 @@
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_scheduler.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "nrf_soc.h"
#include "nrf_assert.h"
#include "app_util.h"
#include "app_util_platform.h"
/**@brief Structure for holding a scheduled event header. */
typedef struct
{
app_sched_event_handler_t handler; /**< Pointer to event handler to receive the event. */
uint16_t event_data_size; /**< Size of event data. */
} event_header_t;
STATIC_ASSERT(sizeof(event_header_t) <= APP_SCHED_EVENT_HEADER_SIZE);
static event_header_t * m_queue_event_headers; /**< Array for holding the queue event headers. */
static uint8_t * m_queue_event_data; /**< Array for holding the queue event data. */
static volatile uint8_t m_queue_start_index; /**< Index of queue entry at the start of the queue. */
static volatile uint8_t m_queue_end_index; /**< Index of queue entry at the end of the queue. */
static uint16_t m_queue_event_size; /**< Maximum event size in queue. */
static uint16_t m_queue_size; /**< Number of queue entries. */
#ifdef APP_SCHEDULER_WITH_PROFILER
static uint16_t m_max_queue_utilization; /**< Maximum observed queue utilization. */
#endif
/**@brief Function for incrementing a queue index, and handle wrap-around.
*
* @param[in] index Old index.
*
* @return New (incremented) index.
*/
static __INLINE uint8_t next_index(uint8_t index)
{
return (index < m_queue_size) ? (index + 1) : 0;
}
static __INLINE uint8_t app_sched_queue_full()
{
uint8_t tmp = m_queue_start_index;
return next_index(m_queue_end_index) == tmp;
}
/**@brief Macro for checking if a queue is full. */
#define APP_SCHED_QUEUE_FULL() app_sched_queue_full()
static __INLINE uint8_t app_sched_queue_empty()
{
uint8_t tmp = m_queue_start_index;
return m_queue_end_index == tmp;
}
/**@brief Macro for checking if a queue is empty. */
#define APP_SCHED_QUEUE_EMPTY() app_sched_queue_empty()
uint32_t app_sched_init(uint16_t event_size, uint16_t queue_size, void * p_event_buffer)
{
uint16_t data_start_index = (queue_size + 1) * sizeof(event_header_t);
// Check that buffer is correctly aligned
if (!is_word_aligned(p_event_buffer))
{
return NRF_ERROR_INVALID_PARAM;
}
// Initialize event scheduler
m_queue_event_headers = p_event_buffer;
m_queue_event_data = &((uint8_t *)p_event_buffer)[data_start_index];
m_queue_end_index = 0;
m_queue_start_index = 0;
m_queue_event_size = event_size;
m_queue_size = queue_size;
#ifdef APP_SCHEDULER_WITH_PROFILER
m_max_queue_utilization = 0;
#endif
return NRF_SUCCESS;
}
#ifdef APP_SCHEDULER_WITH_PROFILER
static void queue_utilization_check(void)
{
uint16_t start = m_queue_start_index;
uint16_t end = m_queue_end_index;
uint16_t queue_utilization = (end >= start) ? (end - start) :
(m_queue_size + 1 - start + end);
if (queue_utilization > m_max_queue_utilization)
{
m_max_queue_utilization = queue_utilization;
}
}
uint16_t app_sched_queue_utilization_get(void)
{
return m_max_queue_utilization;
}
#endif
uint32_t app_sched_event_put(void * p_event_data,
uint16_t event_data_size,
app_sched_event_handler_t handler)
{
uint32_t err_code;
if (event_data_size <= m_queue_event_size)
{
uint16_t event_index = 0xFFFF;
CRITICAL_REGION_ENTER();
if (!APP_SCHED_QUEUE_FULL())
{
event_index = m_queue_end_index;
m_queue_end_index = next_index(m_queue_end_index);
#ifdef APP_SCHEDULER_WITH_PROFILER
// This function call must be protected with critical region because
// it modifies 'm_max_queue_utilization'.
queue_utilization_check();
#endif
}
CRITICAL_REGION_EXIT();
if (event_index != 0xFFFF)
{
// NOTE: This can be done outside the critical region since the event consumer will
// always be called from the main loop, and will thus never interrupt this code.
m_queue_event_headers[event_index].handler = handler;
if ((p_event_data != NULL) && (event_data_size > 0))
{
memcpy(&m_queue_event_data[event_index * m_queue_event_size],
p_event_data,
event_data_size);
m_queue_event_headers[event_index].event_data_size = event_data_size;
}
else
{
m_queue_event_headers[event_index].event_data_size = 0;
}
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
else
{
err_code = NRF_ERROR_INVALID_LENGTH;
}
return err_code;
}
/**@brief Function for reading the next event from specified event queue.
*
* @param[out] pp_event_data Pointer to pointer to event data.
* @param[out] p_event_data_size Pointer to size of event data.
* @param[out] p_event_handler Pointer to event handler function pointer.
*
* @return NRF_SUCCESS if new event, NRF_ERROR_NOT_FOUND if event queue is empty.
*/
static uint32_t app_sched_event_get(void ** pp_event_data,
uint16_t * p_event_data_size,
app_sched_event_handler_t * p_event_handler)
{
uint32_t err_code = NRF_ERROR_NOT_FOUND;
if (!APP_SCHED_QUEUE_EMPTY())
{
uint16_t event_index;
// NOTE: There is no need for a critical region here, as this function will only be called
// from app_sched_execute() from inside the main loop, so it will never interrupt
// app_sched_event_put(). Also, updating of (i.e. writing to) the start index will be
// an atomic operation.
event_index = m_queue_start_index;
m_queue_start_index = next_index(m_queue_start_index);
*pp_event_data = &m_queue_event_data[event_index * m_queue_event_size];
*p_event_data_size = m_queue_event_headers[event_index].event_data_size;
*p_event_handler = m_queue_event_headers[event_index].handler;
err_code = NRF_SUCCESS;
}
return err_code;
}
void app_sched_execute(void)
{
void * p_event_data;
uint16_t event_data_size;
app_sched_event_handler_t event_handler;
// Get next event (if any), and execute handler
while ((app_sched_event_get(&p_event_data, &event_data_size, &event_handler) == NRF_SUCCESS))
{
event_handler(p_event_data, event_data_size);
}
}

View File

@ -0,0 +1,163 @@
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
/** @file
*
* @defgroup app_scheduler Scheduler
* @{
* @ingroup app_common
*
* @brief The scheduler is used for transferring execution from the interrupt context to the main
* context.
*
* @details See @ref seq_diagrams_sched for sequence diagrams illustrating the flow of events
* when using the Scheduler.
*
* @section app_scheduler_req Requirements:
*
* @subsection main_context_logic Logic in main context:
*
* - Define an event handler for each type of event expected.
* - Initialize the scheduler by calling the APP_SCHED_INIT() macro before entering the
* application main loop.
* - Call app_sched_execute() from the main loop each time the application wakes up because of an
* event (typically when sd_app_evt_wait() returns).
*
* @subsection int_context_logic Logic in interrupt context:
*
* - In the interrupt handler, call app_sched_event_put()
* with the appropriate data and event handler. This will insert an event into the
* scheduler's queue. The app_sched_execute() function will pull this event and call its
* handler in the main context.
*
* @if (PERIPHERAL)
* For an example usage of the scheduler, see the implementations of
* @ref ble_sdk_app_hids_mouse and @ref ble_sdk_app_hids_keyboard.
* @endif
*
* @image html scheduler_working.jpg The high level design of the scheduler
*/
#ifndef APP_SCHEDULER_H__
#define APP_SCHEDULER_H__
#include <stdint.h>
#include "app_error.h"
#include "app_util.h"
#define APP_SCHED_EVENT_HEADER_SIZE 8 /**< Size of app_scheduler.event_header_t (only for use inside APP_SCHED_BUF_SIZE()). */
/**@brief Compute number of bytes required to hold the scheduler buffer.
*
* @param[in] EVENT_SIZE Maximum size of events to be passed through the scheduler.
* @param[in] QUEUE_SIZE Number of entries in scheduler queue (i.e. the maximum number of events
* that can be scheduled for execution).
*
* @return Required scheduler buffer size (in bytes).
*/
#define APP_SCHED_BUF_SIZE(EVENT_SIZE, QUEUE_SIZE) \
(((EVENT_SIZE) + APP_SCHED_EVENT_HEADER_SIZE) * ((QUEUE_SIZE) + 1))
/**@brief Scheduler event handler type. */
typedef void (*app_sched_event_handler_t)(void * p_event_data, uint16_t event_size);
/**@brief Macro for initializing the event scheduler.
*
* @details It will also handle dimensioning and allocation of the memory buffer required by the
* scheduler, making sure the buffer is correctly aligned.
*
* @param[in] EVENT_SIZE Maximum size of events to be passed through the scheduler.
* @param[in] QUEUE_SIZE Number of entries in scheduler queue (i.e. the maximum number of events
* that can be scheduled for execution).
*
* @note Since this macro allocates a buffer, it must only be called once (it is OK to call it
* several times as long as it is from the same location, e.g. to do a reinitialization).
*/
#define APP_SCHED_INIT(EVENT_SIZE, QUEUE_SIZE) \
do \
{ \
static uint32_t APP_SCHED_BUF[CEIL_DIV(APP_SCHED_BUF_SIZE((EVENT_SIZE), (QUEUE_SIZE)), \
sizeof(uint32_t))]; \
uint32_t ERR_CODE = app_sched_init((EVENT_SIZE), (QUEUE_SIZE), APP_SCHED_BUF); \
APP_ERROR_CHECK(ERR_CODE); \
} while (0)
/**@brief Function for initializing the Scheduler.
*
* @details It must be called before entering the main loop.
*
* @param[in] max_event_size Maximum size of events to be passed through the scheduler.
* @param[in] queue_size Number of entries in scheduler queue (i.e. the maximum number of
* events that can be scheduled for execution).
* @param[in] p_evt_buffer Pointer to memory buffer for holding the scheduler queue. It must
* be dimensioned using the APP_SCHED_BUFFER_SIZE() macro. The buffer
* must be aligned to a 4 byte boundary.
*
* @note Normally initialization should be done using the APP_SCHED_INIT() macro, as that will both
* allocate the scheduler buffer, and also align the buffer correctly.
*
* @retval NRF_SUCCESS Successful initialization.
* @retval NRF_ERROR_INVALID_PARAM Invalid parameter (buffer not aligned to a 4 byte
* boundary).
*/
uint32_t app_sched_init(uint16_t max_event_size, uint16_t queue_size, void * p_evt_buffer);
/**@brief Function for executing all scheduled events.
*
* @details This function must be called from within the main loop. It will execute all events
* scheduled since the last time it was called.
*/
void app_sched_execute(void);
/**@brief Function for scheduling an event.
*
* @details Puts an event into the event queue.
*
* @param[in] p_event_data Pointer to event data to be scheduled.
* @param[in] event_size Size of event data to be scheduled.
* @param[in] handler Event handler to receive the event.
*
* @return NRF_SUCCESS on success, otherwise an error code.
*/
uint32_t app_sched_event_put(void * p_event_data,
uint16_t event_size,
app_sched_event_handler_t handler);
#ifdef APP_SCHEDULER_WITH_PROFILER
/**@brief Function for getting the maximum observed queue utilization.
*
* Function for tuning the module and determining QUEUE_SIZE value and thus module RAM usage.
*
* @return Maximum number of events in queue observed so far.
*/
uint16_t app_sched_queue_utilization_get(void);
#endif
#ifdef APP_SCHEDULER_WITH_PAUSE
/**@brief A function to pause the scheduler.
*
* @details When the scheduler is paused events are not pulled from the scheduler queue for
* processing. The function can be called multiple times. To unblock the scheduler the
* function @ref app_sched_resume has to be called the same number of times.
*/
void app_sched_pause(void);
/**@brief A function to resume a scheduler.
*
* @details To unblock the scheduler this function has to be called the same number of times as
* @ref app_sched_pause function.
*/
void app_sched_resume(void);
#endif
#endif // APP_SCHEDULER_H__
/** @} */

View File

@ -0,0 +1,262 @@
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_scheduler.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "nrf_soc.h"
#include "nrf_assert.h"
#include "app_util.h"
#include "app_util_platform.h"
/**@brief Structure for holding a scheduled event header. */
typedef struct
{
app_sched_event_handler_t handler; /**< Pointer to event handler to receive the event. */
uint16_t event_data_size; /**< Size of event data. */
} event_header_t;
STATIC_ASSERT(sizeof (event_header_t) <= APP_SCHED_EVENT_HEADER_SIZE);
static event_header_t * m_queue_event_headers; /**< Array for holding the queue event headers. */
static uint8_t * m_queue_event_data; /**< Array for holding the queue event data. */
static volatile uint8_t m_queue_start_index; /**< Index of queue entry at the start of the queue. */
static volatile uint8_t m_queue_end_index; /**< Index of queue entry at the end of the queue. */
static uint16_t m_queue_event_size; /**< Maximum event size in queue. */
static uint16_t m_queue_size; /**< Number of queue entries. */
#ifdef APP_SCHEDULER_WITH_PROFILER
static uint16_t m_max_queue_utilization; /**< Maximum observed queue utilization. */
#endif
static uint32_t m_scheduler_paused_counter = 0; /**< Counter storing the difference between pausing
and resuming the scheduler. */
/**@brief Function for incrementing a queue index, and handle wrap-around.
*
* @param[in] index Old index.
*
* @return New (incremented) index.
*/
static __INLINE uint8_t next_index(uint8_t index)
{
return (index < m_queue_size) ? (index + 1) : 0;
}
static __INLINE uint8_t app_sched_queue_full(void)
{
uint8_t tmp = m_queue_start_index;
return next_index(m_queue_end_index) == tmp;
}
/**@brief Macro for checking if a queue is full. */
#define APP_SCHED_QUEUE_FULL() app_sched_queue_full()
static __INLINE uint8_t app_sched_queue_empty(void)
{
uint8_t tmp = m_queue_start_index;
return m_queue_end_index == tmp;
}
/**@brief Macro for checking if a queue is empty. */
#define APP_SCHED_QUEUE_EMPTY() app_sched_queue_empty()
uint32_t app_sched_init(uint16_t event_size, uint16_t queue_size, void * p_event_buffer)
{
uint16_t data_start_index = (queue_size + 1) * sizeof (event_header_t);
//Check that buffer is correctly aligned
if (!is_word_aligned(p_event_buffer))
{
return NRF_ERROR_INVALID_PARAM;
}
//Initialize event scheduler
m_queue_event_headers = p_event_buffer;
m_queue_event_data = &((uint8_t *)p_event_buffer)[data_start_index];
m_queue_end_index = 0;
m_queue_start_index = 0;
m_queue_event_size = event_size;
m_queue_size = queue_size;
#ifdef APP_SCHEDULER_WITH_PROFILER
m_max_queue_utilization = 0;
#endif
return NRF_SUCCESS;
}
#ifdef APP_SCHEDULER_WITH_PROFILER
static void check_queue_utilization(void)
{
uint16_t start = m_queue_start_index;
uint16_t end = m_queue_end_index;
uint16_t queue_utilization = (end >= start) ? (end - start) :
(m_queue_size + 1 - start + end);
if (queue_utilization > m_max_queue_utilization)
{
m_max_queue_utilization = queue_utilization;
}
}
uint16_t app_sched_queue_utilization_get(void)
{
return m_max_queue_utilization;
}
#endif
uint32_t app_sched_event_put(void * p_event_data,
uint16_t event_data_size,
app_sched_event_handler_t handler)
{
uint32_t err_code;
if (event_data_size <= m_queue_event_size)
{
uint16_t event_index = 0xFFFF;
CRITICAL_REGION_ENTER();
if (!APP_SCHED_QUEUE_FULL())
{
event_index = m_queue_end_index;
m_queue_end_index = next_index(m_queue_end_index);
}
CRITICAL_REGION_EXIT();
if (event_index != 0xFFFF)
{
//NOTE: This can be done outside the critical region since the event consumer will
//always be called from the main loop, and will thus never interrupt this code.
m_queue_event_headers[event_index].handler = handler;
if ((p_event_data != NULL) && (event_data_size > 0))
{
memcpy(&m_queue_event_data[event_index * m_queue_event_size],
p_event_data,
event_data_size);
m_queue_event_headers[event_index].event_data_size = event_data_size;
}
else
{
m_queue_event_headers[event_index].event_data_size = 0;
}
#ifdef APP_SCHEDULER_WITH_PROFILER
check_queue_utilization();
#endif
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
else
{
err_code = NRF_ERROR_INVALID_LENGTH;
}
return err_code;
}
/**@brief Function for reading the next event from specified event queue.
*
* @param[out] pp_event_data Pointer to pointer to event data.
* @param[out] p_event_data_size Pointer to size of event data.
* @param[out] p_event_handler Pointer to event handler function pointer.
*
* @return NRF_SUCCESS if new event, NRF_ERROR_NOT_FOUND if event queue is empty.
*/
static uint32_t app_sched_event_get(void * * pp_event_data,
uint16_t * p_event_data_size,
app_sched_event_handler_t * p_event_handler)
{
uint32_t err_code = NRF_ERROR_NOT_FOUND;
if (!APP_SCHED_QUEUE_EMPTY())
{
uint16_t event_index;
//NOTE: There is no need for a critical region here, as this function will only be called
//from app_sched_execute() from inside the main loop, so it will never interrupt
//app_sched_event_put(). Also, updating of (i.e. writing to) the start index will be
//an atomic operation.
event_index = m_queue_start_index;
m_queue_start_index = next_index(m_queue_start_index);
*pp_event_data = &m_queue_event_data[event_index * m_queue_event_size];
*p_event_data_size = m_queue_event_headers[event_index].event_data_size;
*p_event_handler = m_queue_event_headers[event_index].handler;
err_code = NRF_SUCCESS;
}
return err_code;
}
void app_sched_pause(void)
{
CRITICAL_REGION_ENTER();
if (m_scheduler_paused_counter < UINT32_MAX)
{
m_scheduler_paused_counter++;
}
CRITICAL_REGION_EXIT();
}
void app_sched_resume(void)
{
CRITICAL_REGION_ENTER();
if (m_scheduler_paused_counter > 0)
{
m_scheduler_paused_counter--;
}
CRITICAL_REGION_EXIT();
}
/**@brief Function for checking if scheduler is paused which means that should break processing
* events.
*
* @return Boolean value - true if scheduler is paused, false otherwise.
*/
static __INLINE bool is_app_sched_paused(void)
{
return (m_scheduler_paused_counter > 0);
}
void app_sched_execute(void)
{
void * p_event_data;
uint16_t event_data_size;
app_sched_event_handler_t event_handler;
//Get next event (if any), and execute handler
while ((!is_app_sched_paused()) &&
(app_sched_event_get(&p_event_data, &event_data_size, &event_handler) == NRF_SUCCESS))
{
event_handler(p_event_data, event_data_size);
}
}