program has started execution

Signed-off-by: Sean Cross <sean@xobs.io>
This commit is contained in:
Sean Cross 2023-12-30 21:26:12 +08:00
parent 9e51cb8c32
commit 141cb2e9dc
1 changed files with 364 additions and 2 deletions

View File

@ -1,7 +1,369 @@
use std::io::Read;
#[derive(Debug)]
enum LoadError {
IncorrectFormat,
BitSizeError,
SatpWriteError,
MstatusWriteError,
CpuTrap(riscv_cpu::cpu::Trap),
}
impl std::fmt::Display for LoadError {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
LoadError::IncorrectFormat => write!(f, "Incorrect format"),
LoadError::BitSizeError => write!(f, "Incorrect bit size"),
LoadError::SatpWriteError => write!(f, "Couldn't write to SATP register"),
LoadError::MstatusWriteError => write!(f, "Couldn't write to MSTATUS register"),
LoadError::CpuTrap(trap) => write!(f, "CPU trap: {:?}", trap),
}
}
}
impl std::error::Error for LoadError {}
struct MemoryManager32<'a> {
memory: &'a mut [u8],
base: u32,
allocator_offset: u32,
satp: u32,
l1_pt: u32,
}
const MMUFLAG_VALID: u32 = 0x01;
pub const MMUFLAG_READABLE: u32 = 0x02;
pub const MMUFLAG_WRITABLE: u32 = 0x04;
pub const MMUFLAG_EXECUTABLE: u32 = 0x8;
pub const MMUFLAG_U: u32 = 0x10;
pub const MMUFLAG_ACCESSED: u32 = 0x40;
pub const MMUFLAG_DIRTY: u32 = 0x80;
impl<'a> MemoryManager32<'a> {
fn new(memory: &'a mut [u8], base: u32) -> Self {
// Allocate a single process. Place the root page table at
// the second block of memory.
Self {
memory,
base,
allocator_offset: 8192,
l1_pt: base + 4096,
satp: ((4096 + base) >> 12) | 0x8000_0000,
}
}
fn allocate_page(&mut self) -> u32 {
let page = self.allocator_offset;
self.allocator_offset += 4096;
page + self.base
}
pub fn virt_to_phys(&self, virt: u32) -> Option<u32> {
let vpn1 = ((virt >> 22) & ((1 << 10) - 1)) as usize * 4;
let vpn0 = ((virt >> 12) & ((1 << 10) - 1)) as usize * 4;
let offset = virt & ((1 << 12) - 1);
// The root (l1) pagetable is defined to be mapped into our virtual
// address space at this address.
let l1_pt = &self.memory[(self.l1_pt - self.base).try_into().unwrap()..];
// If the level 1 pagetable doesn't exist, then this address is invalid
let l1_pt_entry = u32::from_le_bytes(l1_pt[vpn1..vpn1 + 4].try_into().unwrap());
if l1_pt_entry & MMUFLAG_VALID == 0 {
return None;
}
if l1_pt_entry & (MMUFLAG_EXECUTABLE | MMUFLAG_READABLE | MMUFLAG_WRITABLE) != 0 {
return None;
}
let l0_pt = &self.memory[(((l1_pt_entry >> 10) << 12) - self.base)
.try_into()
.unwrap()..];
let l0_pt_entry = u32::from_le_bytes(l0_pt[vpn0..vpn0 + 4].try_into().unwrap());
// Ensure the entry hasn't already been mapped.
if l0_pt_entry & MMUFLAG_VALID == 0 {
return None;
}
Some(((l0_pt_entry >> 10) << 12) | offset)
}
fn read_phys_u32(&self, address: u32) -> u32 {
assert!(address >= self.base && address <= self.base + self.memory.len() as u32);
u32::from_le_bytes(
self.memory[(address - self.base).try_into().unwrap()
..(address - self.base + 4).try_into().unwrap()]
.try_into()
.unwrap(),
)
}
fn write_phys_u32(&mut self, address: u32, value: u32) {
assert!(address >= self.base && address <= self.base + self.memory.len() as u32);
for (src, dest) in value
.to_le_bytes()
.iter()
.zip(self.memory[(address - self.base).try_into().unwrap()..].iter_mut())
{
*dest = *src;
}
}
fn read_virt_u32(&self, address: u32) -> u32 {
self.read_phys_u32(self.virt_to_phys(address).unwrap())
}
fn write_virt_u8(&mut self, address: u32, value: u8) {
let phys: usize = (self.virt_to_phys(address).unwrap() - self.base)
.try_into()
.unwrap();
self.memory[phys] = value;
}
fn is_allocated(&self, address: u32) -> bool {
self.virt_to_phys(address).is_some()
}
/// Allocate a brand-new memory mapping. When this memory mapping is created,
/// it will be ready to use in a new process, however it will have no actual
/// program code. It will, however, have the following pages mapped:
///
/// 1. The kernel will be mapped to superpage 1023, meaning the kernel can
/// switch to this process and do things.
/// 2. A page will be allocated for superpage 1022, to contain pages for
/// process-specific code.
/// 3. A page will be allocated for superpage 1021, to contain pages for
/// managing pages.
/// 4. The root pagetable will be allocated and mapped at 0xff800000,
/// ensuring new superpages can be allocated.
/// 5. A context page will be allocated at 0xff801000, ensuring the
/// process can actually be run.
/// 6. Individual pagetable mappings are mapped at 0xff400000
/// At the end of this operation, the following mapping will take place. Note that
/// names are repeated in the chart below to indicate they are the same page
/// represented multiple times. Items in brackets are offsets (in `usize`-words)
/// from the start of the page. For example, offset 1023 on the root pagetable
/// (address 4092) contains an entry that points to the kernel superpage.
/// +----------------+
/// | Root Pagetable |
/// | root |
/// +----------------+
/// |
/// +---------------+-------------------+------------------+
/// | | |
/// [1021] [1022] [1023]
/// v v v
/// +--------------+ +--------------+ +--------+
/// | Level 0/1021 | | Level 0/1022 | | Kernel |
/// | pages_l0 | | process_l0 | | |
/// +--------------+ +--------------+ +--------+
/// | |
/// +-------+---------+ +---+-----------+
/// | | | |
/// [1021] [1022] [0] [1]
/// v v v v
/// +--------------+ +--------------+ +----------------+ +---------+
/// | Level 0/1021 | | Level 0/1022 | | Root Pagetable | | Context |
/// +--------------+ +--------------+ +----------------+ +---------+
fn ensure_page(&mut self, virt: u32) {
let vpn1 = (virt >> 22) & ((1 << 10) - 1);
let vpn0 = (virt >> 12) & ((1 << 10) - 1);
// println!("Ensuring page {:08x} exists", virt);
// Ensure there's a level 0 pagetable
let mut l1_pt_entry = self.read_phys_u32(self.l1_pt + vpn1 * 4);
if l1_pt_entry & MMUFLAG_VALID == 0 {
// Allocate a new page for the level 1 pagetable
let l0_pt_phys = self.allocate_page();
// println!("Allocating level 0 pagetable at {:08x}", l0_pt_phys);
l1_pt_entry =
((l0_pt_phys >> 12) << 10) | MMUFLAG_VALID | MMUFLAG_DIRTY | MMUFLAG_ACCESSED;
// Map the level 1 pagetable into the root pagetable
self.write_phys_u32(self.l1_pt + vpn1 * 4, l1_pt_entry);
}
let l0_pt_phys = l1_pt_entry >> 10 << 12;
// println!(
// "Level 0 pagetable at {:08x} (l1_pt_entry: {:08x})",
// l0_pt_phys, l1_pt_entry
// );
// Ensure the page is mapped
let mut l0_pt_entry = self.read_phys_u32(l0_pt_phys + vpn0 * 4);
if l0_pt_entry & MMUFLAG_VALID == 0 {
// Allocate a new page for the level 0 pagetable
let page_phys = self.allocate_page();
// println!("Allocating physical page at {:08x}", page_phys);
l0_pt_entry = ((page_phys >> 12) << 10)
| MMUFLAG_VALID
| MMUFLAG_WRITABLE
| MMUFLAG_READABLE
| MMUFLAG_EXECUTABLE
| MMUFLAG_DIRTY
| MMUFLAG_ACCESSED;
// Map the level 0 pagetable into the level 1 pagetable
self.write_phys_u32(l0_pt_phys + vpn0 * 4, l0_pt_entry);
}
}
fn write_bytes(&mut self, data: &[u8], start: u32) {
for (i, byte) in data.iter().enumerate() {
let i = i as u32;
// println!("Map: {}", self);
self.ensure_page(start + i);
// println!("Writing byte to {:08x}...", start + i);
// println!("Map: {}", self);
if start + i == 0x258062 {
println!("Writing {:02x} to {:08x}", byte, start + i);
}
self.write_virt_u8(start + i, *byte);
}
}
}
impl core::fmt::Display for MemoryManager32<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
writeln!(f, "Memory Maps:")?;
let l1_pt = &self.memory[(self.l1_pt - self.base).try_into().unwrap()..];
for (i, l1_entry) in l1_pt[0..4096].chunks(4).enumerate() {
let l1_entry = u32::from_le_bytes(l1_entry.try_into().unwrap());
if l1_entry == 0 {
continue;
}
let superpage_addr = i as u32 * (1 << 22);
writeln!(
f,
" {:4} Superpage for {:08x} @ {:08x} (flags: {:?})",
i,
superpage_addr,
(l1_entry >> 10) << 12,
// MMUFlags::from_bits(l1_entry & 0xff).unwrap()
l1_entry & 0xff,
)?;
let l0_pt = &self.memory[(((l1_entry >> 10) << 12) - self.base).try_into().unwrap()..];
for (j, l0_entry) in l0_pt[0..4096].chunks(4).enumerate() {
let l0_entry = u32::from_le_bytes(l0_entry.try_into().unwrap());
if l0_entry & 0x7 == 0 {
continue;
}
let page_addr = j as u32 * (1 << 12);
writeln!(
f,
" {:4} {:08x} -> {:08x} (flags: {:?})",
j,
superpage_addr + page_addr,
(l0_entry >> 10) << 12,
// MMUFlags::from_bits(l0_entry & 0xff).unwrap()
l0_entry & 0xff,
)?;
}
}
Ok(())
}
}
fn load_program_to_cpu(cpu: &mut riscv_cpu::Cpu, program: &[u8]) -> Result<(), LoadError> {
let memory_base = cpu.memory_base();
let memory_size = cpu.memory_size();
let goblin::Object::Elf(elf) =
goblin::Object::parse(program).map_err(|_| LoadError::IncorrectFormat)?
else {
return Err(LoadError::IncorrectFormat);
};
if elf.is_64 {
return Err(LoadError::BitSizeError);
}
let mut shadow_memory = vec![0; memory_size as usize];
let mut mm = MemoryManager32::new(&mut shadow_memory, memory_base as u32);
for sh in elf.section_headers {
if sh.sh_flags as u32 & goblin::elf::section_header::SHF_ALLOC == 0 {
// println!(
// "Skipping section {}",
// elf.shdr_strtab
// .get_at(sh.sh_name)
// .unwrap_or("???unknown???")
// );
continue;
}
// println!(
// "Section {}: Loading {} bytes at {:x}",
// elf.shdr_strtab
// .get_at(sh.sh_name)
// .unwrap_or("???unknown???"),
// sh.sh_size,
// sh.sh_offset
// );
if sh.sh_type & goblin::elf::section_header::SHT_NOBITS != 0 {
for addr in sh.sh_addr..(sh.sh_addr + sh.sh_size) {
mm.ensure_page(addr.try_into().unwrap());
mm.write_virt_u8(addr.try_into().unwrap(), 0);
}
} else {
mm.write_bytes(
&program[sh.sh_offset as usize..(sh.sh_offset + sh.sh_size) as usize],
sh.sh_addr.try_into().unwrap(),
);
}
}
// TODO: Get memory permissions correct
let satp = mm.satp.into();
// Ensure stack is allocated
for page in (0xc000_0000..0xc002_0000).step_by(4096) {
mm.ensure_page(page);
}
for (offset, byte) in shadow_memory.into_iter().enumerate() {
if byte == 0 {
continue;
}
// println!("Writing {:02x} to {:08x}", byte, offset as u64 + memory_base);
cpu.phys_write_u8(offset as u64 + memory_base, byte);
}
cpu.write_csr(riscv_cpu::cpu::CSR_SATP_ADDRESS, satp)
.map_err(|_| LoadError::SatpWriteError)?;
cpu.update_pc(elf.entry);
// Return to User Mode (0 << 11) with interrupts disabled (1 << 5)
cpu.write_csr(riscv_cpu::cpu::CSR_MSTATUS_ADDRESS, 1 << 5)
.map_err(|_| LoadError::MstatusWriteError)?;
cpu.write_csr(riscv_cpu::cpu::CSR_SEPC_ADDRESS, elf.entry)
.unwrap();
// SRET to return to user mode
cpu.execute_opcode(0x10200073).map_err(LoadError::CpuTrap)?;
// Update the stack pointer
cpu.write_register(2, 0xc002_0000 - 4);
Ok(())
}
fn main() {
let mut std_tests = Vec::new();
std::fs::File::open("std-tests")
.expect("couldn't open std-tests")
.read_to_end(&mut std_tests)
.expect("couldn't read std-tests");
let mut cpu = riscv_cpu::CpuBuilder::new()
.memory_size(64 * 1024 * 1024)
.memory_size(16 * 1024 * 1024)
.xlen(riscv_cpu::Xlen::Bit32)
.build();
println!("Hello, world!");
load_program_to_cpu(&mut cpu, &std_tests).expect("couldn't load std-tests");
for tick in 0..1000 {
cpu.tick();
}
}