simmel-bootloader/lib/sdk/components/libraries/hci/hci_transport.c

809 lines
30 KiB
C

/**
* Copyright (c) 2013 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(HCI_TRANSPORT)
#include "hci_transport.h"
#include "hci_slip.h"
#include "crc16.h"
#include "hci_mem_pool.h"
#include "app_timer.h"
#include "app_error.h"
#include <stdio.h>
#define PKT_HDR_SIZE 4u /**< Packet header size in number of bytes. */
#define PKT_CRC_SIZE 2u /**< Packet CRC size in number of bytes. */
#define PKT_TYPE_VENDOR_SPECIFIC 14u /**< Packet type vendor specific. */
#define PKT_TYPE_ACK 0 /**< Packet type acknowledgement. */
#define DATA_INTEGRITY_MASK (1u << 6u) /**< Mask for data integrity bit in the packet header. */
#define RELIABLE_PKT_MASK (1u << 7u) /**< Mask for reliable packet bit in the packet header. */
#define INITIAL_ACK_NUMBER_EXPECTED 1u /**< Initial acknowledge number expected. */
#define INITIAL_ACK_NUMBER_TX INITIAL_ACK_NUMBER_EXPECTED /**< Initial acknowledge number transmitted. */
#define INVALID_PKT_TYPE 0xFFFFFFFFu /**< Internal invalid packet type value. */
#define HCI_UART_REG_VALUE_TO_BAUDRATE(BAUDRATE) ((BAUDRATE)/268) /**< Estimated relation between UART baudrate register value and actual baudrate */
#define MAX_TRANSMISSION_TIME \
(ROUNDED_DIV((HCI_MAX_PACKET_SIZE_IN_BITS * 1000u), \
HCI_UART_REG_VALUE_TO_BAUDRATE(HCI_UART_BAUDRATE))) /**< Max transmission time of a single application packet over UART in units of mseconds. */
#define RETRANSMISSION_TIMEOUT_IN_MS (3u * MAX_TRANSMISSION_TIME) /**< Retransmission timeout for application packet in units of mseconds. */
#define RETRANSMISSION_TIMEOUT_IN_TICKS APP_TIMER_TICKS(RETRANSMISSION_TIMEOUT_IN_MS) /**< Retransmission timeout for application packet in units of timer ticks. */
#define MAX_RETRY_COUNT 5u /**< Max retransmission retry count for application packets. */
#define ACK_BUF_SIZE 5u /**< Length of module internal RX buffer which is big enough to hold an acknowledgement packet. */
/**@brief States of the TX state machine. */
typedef enum
{
TX_STATE_IDLE, /**< State for: no application transmission packet processing in progress. */
TX_STATE_PENDING, /**< State for: TX in progress in slip layer and TX-done event is waited for to signal the end of transmission. */
TX_STATE_ACTIVE /**< State for: application packet has been delivered to slip for transmission and peer transport entity acknowledgement packet is waited for. */
} tx_state_t;
/**@brief TX state machine events. */
typedef enum
{
TX_EVENT_STATE_ENTRY, /**< Event for: state entry use case. */
TX_EVENT_SLIP_TX_DONE, /**< Event for: HCI_SLIP_TX_DONE event use case. */
TX_EVENT_TIMEOUT, /**< Event for: retransmission timeout use case. */
TX_EVENT_VALID_RX_ACK /**< Event for: valid acknowledgement received for TX packet use case. */
} tx_event_t;
static void tx_sm_state_change(tx_state_t new_state);
static tx_state_t m_tx_state; /**< Current TX state. */
static hci_transport_tx_done_handler_t m_transport_tx_done_handle; /**< TX done event callback function. */
static hci_transport_event_handler_t m_transport_event_handle; /**< Event handler callback function. */
static uint8_t * mp_slip_used_rx_buffer; /**< Reference to RX buffer used by the slip layer. */
static uint32_t m_packet_expected_seq_number; /**< Sequence number counter of the packet expected to be received . */
static uint32_t m_packet_transmit_seq_number; /**< Sequence number counter of the transmitted packet for which acknowledgement packet is waited for. */
static uint8_t * mp_tx_buffer; /**< Pointer to TX application buffer to be transmitted. */
static uint32_t m_tx_buffer_length; /**< Length of application TX packet data to be transmitted in bytes. */
static bool m_is_slip_decode_ready; /**< Boolean to determine has slip decode been completed or not. */
APP_TIMER_DEF(m_app_timer_id); /**< Application timer id. */
static uint32_t m_tx_retry_counter; /**< Application packet retransmission counter. */
static hci_transport_tx_done_result_t m_tx_done_result_code; /**< TX done event callback function result code. */
static uint8_t m_rx_ack_buffer[ACK_BUF_SIZE];/**< RX buffer big enough to hold an acknowledgement packet and which is taken in use upon receiving HCI_SLIP_RX_OVERFLOW event. */
/**@brief Function for validating a received packet.
*
* @param[in] p_buffer Pointer to the packet data.
* @param[in] length Length of packet data in bytes.
*
* @return true if received packet is valid, false in other case.
*/
static bool is_rx_pkt_valid(const uint8_t * p_buffer, uint32_t length)
{
// Executed packet filtering algorithm order:
// - verify packet overall length
// - verify data integrity bit set
// - verify reliable packet bit set
// - verify supported packet type
// - verify header checksum
// - verify payload length field
// - verify CRC
if (length <= PKT_HDR_SIZE)
{
return false;
}
if (!(p_buffer[0] & DATA_INTEGRITY_MASK))
{
return false;
}
if (!(p_buffer[0] & RELIABLE_PKT_MASK))
{
return false;
}
if ((p_buffer[1] & 0x0Fu) != PKT_TYPE_VENDOR_SPECIFIC)
{
return false;
}
const uint32_t expected_checksum =
((p_buffer[0] + p_buffer[1] + p_buffer[2] + p_buffer[3])) & 0xFFu;
if (expected_checksum != 0)
{
return false;
}
const uint16_t crc_calculated = crc16_compute(p_buffer, (length - PKT_CRC_SIZE), NULL);
const uint16_t crc_received = uint16_decode(&p_buffer[length - PKT_CRC_SIZE]);
if (crc_calculated != crc_received)
{
return false;
}
return true;
}
/**@brief Function for getting the sequence number of the next reliable packet expected.
*
* @return sequence number of the next reliable packet expected.
*/
static __INLINE uint8_t packet_number_expected_get(void)
{
return (uint8_t) m_packet_expected_seq_number;
}
/**@brief Function for calculating a packet header checksum.
*
* @param[in] p_hdr Pointer to the packet header.
*
* @return Calculated checksum.
*/
static uint8_t header_checksum_calculate(const uint8_t * p_hdr)
{
// @note: no pointer validation check needed as already checked by calling function.
uint32_t checksum;
checksum = p_hdr[0];
checksum += p_hdr[1];
checksum += p_hdr[2];
checksum &= 0xFFu;
checksum = (~checksum + 1u);
return (uint8_t)checksum;
}
/**@brief Function for writing an acknowledgment packet for transmission.
*/
static void ack_transmit(void)
{
static uint8_t ack_packet[PKT_HDR_SIZE];
// TX ACK packet format:
// - Unreliable Packet type
// - Payload Length set to 0
// - Sequence Number set to 0
// - Header checksum calculated
// - Acknowledge Number set correctly
ack_packet[0] = (packet_number_expected_get() << 3u);
ack_packet[1] = 0;
ack_packet[2] = 0;
ack_packet[3] = header_checksum_calculate(ack_packet);
// @note: no return value check needed for hci_slip_write(...) call as acknowledgement packets
// are considered to be from system design point of view unreliable packets.Use case where
// underlying slip layer does not accept a packet for transmission is managed either by:
// - acknowledged by possible future application packet as acknowledgement number header field
// is included
// - protocol peer entity will retransmit the packet
UNUSED_VARIABLE(hci_slip_write(ack_packet, sizeof(ack_packet)));
}
/**@brief Function for validating a received packet.
*
* @param[in] p_buffer Pointer to the packet data.
*
* @return sequence number field of the packet header with unrelated data masked out.
*/
static __INLINE uint8_t packet_seq_nmbr_extract(const uint8_t * p_buffer)
{
return (p_buffer[0] & 0x07u);
}
/**@brief Function for incrementing the sequence number counter for next reliable packet expected.
*/
static __INLINE void packet_number_expected_inc(void)
{
++m_packet_expected_seq_number;
m_packet_expected_seq_number &= 0x07u;
}
/**@brief Function for decoding a packet type field.
*
* @param[in] p_buffer Pointer to the packet data.
* @param[in] length Length of packet data in bytes.
*
* @return Packet type field or INVALID_PKT_TYPE in case of decode error.
*/
static __INLINE uint32_t packet_type_decode(const uint8_t * p_buffer, uint32_t length)
{
// @note: no pointer validation check needed as allready checked by calling function.
uint32_t return_value;
if (length >= PKT_HDR_SIZE)
{
return_value = (p_buffer[1] & 0x0Fu);
}
else
{
return_value = INVALID_PKT_TYPE;
}
return return_value;
}
/**@brief Function for processing a received vendor specific packet.
*
* @param[in] p_buffer Pointer to the packet data.
* @param[in] length Length of packet data in bytes.
*/
static void rx_vendor_specific_pkt_type_handle(const uint8_t * p_buffer, uint32_t length)
{
// @note: no pointer validation check needed as allready checked by calling function.
uint32_t err_code;
if (is_rx_pkt_valid(p_buffer, length))
{
// RX packet is valid: validate sequence number.
const uint8_t rx_seq_number = packet_seq_nmbr_extract(p_buffer);
if (packet_number_expected_get() == rx_seq_number)
{
// Sequence number is valid: transmit acknowledgement.
packet_number_expected_inc();
ack_transmit();
m_is_slip_decode_ready = true;
err_code = hci_mem_pool_rx_data_size_set(length);
APP_ERROR_CHECK(err_code);
err_code = hci_mem_pool_rx_produce(HCI_RX_BUF_SIZE, (void **)&mp_slip_used_rx_buffer);
APP_ERROR_CHECK_BOOL((err_code == NRF_SUCCESS) || (err_code == NRF_ERROR_NO_MEM));
// If memory pool RX buffer produce succeeded we register that buffer to slip layer
// otherwise we register the internal acknowledgement buffer.
err_code = hci_slip_rx_buffer_register(
(err_code == NRF_SUCCESS) ? mp_slip_used_rx_buffer : m_rx_ack_buffer,
(err_code == NRF_SUCCESS) ? HCI_RX_BUF_SIZE : ACK_BUF_SIZE);
APP_ERROR_CHECK(err_code);
if (m_transport_event_handle != NULL)
{
// Send application event of RX packet reception.
const hci_transport_evt_t evt = {HCI_TRANSPORT_RX_RDY};
m_transport_event_handle(evt);
}
}
else
{
// RX packet discarded: sequence number not valid, set the same buffer to slip layer in
// order to avoid buffer overrun.
err_code = hci_slip_rx_buffer_register(mp_slip_used_rx_buffer, HCI_RX_BUF_SIZE);
APP_ERROR_CHECK(err_code);
// As packet did not have expected sequence number: send acknowledgement with the
// current expected sequence number.
ack_transmit();
}
}
else
{
// RX packet discarded: reset the same buffer to slip layer in order to avoid buffer
// overrun.
err_code = hci_slip_rx_buffer_register(mp_slip_used_rx_buffer, HCI_RX_BUF_SIZE);
APP_ERROR_CHECK(err_code);
}
}
/**@brief Function for getting the sequence number of a reliable TX packet for which peer protocol
* entity acknowledgment is pending.
*
* @return sequence number of a reliable TX packet for which peer protocol entity acknowledgement
* is pending.
*/
static __INLINE uint8_t packet_number_to_transmit_get(void)
{
return m_packet_transmit_seq_number;
}
/**@brief Function for getting the expected acknowledgement number.
*
* @return expected acknowledgement number.
*/
static __INLINE uint8_t expected_ack_number_get(void)
{
uint8_t seq_nmbr = packet_number_to_transmit_get();
++seq_nmbr;
seq_nmbr &= 0x07u;
return seq_nmbr;
}
/**@brief Function for processing a received acknowledgement packet.
*
* Verifies does the received acknowledgement packet has the expected acknowledgement number and
* that the header checksum is correct.
*
* @param[in] p_buffer Pointer to the packet data.
*
* @return true if valid acknowledgement packet received.
*/
static __INLINE bool rx_ack_pkt_type_handle(const uint8_t * p_buffer)
{
// @note: no pointer validation check needed as allready checked by calling function.
// Verify header checksum.
const uint32_t expected_checksum =
((p_buffer[0] + p_buffer[1] + p_buffer[2] + p_buffer[3])) & 0xFFu;
if (expected_checksum != 0)
{
return false;
}
const uint8_t ack_number = (p_buffer[0] >> 3u) & 0x07u;
// Verify expected acknowledgment number.
return (ack_number == expected_ack_number_get());
}
/**@brief Function for incrementing the sequence number counter of the TX packet.
*/
static __INLINE void packet_number_tx_inc(void)
{
++m_packet_transmit_seq_number;
m_packet_transmit_seq_number &= 0x07u;
}
/**@brief Function for TX state machine event processing in a state centric manner.
*
* @param[in] event Type of event occurred.
*/
static void tx_sm_event_handle(tx_event_t event)
{
uint32_t err_code;
switch (m_tx_state)
{
case TX_STATE_IDLE:
if (event == TX_EVENT_STATE_ENTRY)
{
err_code = app_timer_stop(m_app_timer_id);
APP_ERROR_CHECK(err_code);
// Send TX-done event if registered handler exists.
if (m_transport_tx_done_handle != NULL)
{
m_transport_tx_done_handle(m_tx_done_result_code);
}
}
break;
case TX_STATE_PENDING:
if (event == TX_EVENT_SLIP_TX_DONE)
{
// @note: this call should always succeed as called from HCI_SLIP_TX_DONE context
// and error cases are managed by dedicated error event from the slip layer.
err_code = hci_slip_write(mp_tx_buffer,
(m_tx_buffer_length + PKT_HDR_SIZE + PKT_CRC_SIZE));
APP_ERROR_CHECK(err_code);
tx_sm_state_change(TX_STATE_ACTIVE);
}
break;
case TX_STATE_ACTIVE:
switch (event)
{
case TX_EVENT_VALID_RX_ACK:
// Tx sequence number counter incremented as packet transmission
// acknowledged by peer transport entity.
packet_number_tx_inc();
tx_sm_state_change(TX_STATE_IDLE);
break;
case TX_EVENT_STATE_ENTRY:
m_tx_retry_counter = 0;
err_code = app_timer_start(m_app_timer_id,
RETRANSMISSION_TIMEOUT_IN_TICKS,
NULL);
APP_ERROR_CHECK(err_code);
break;
case TX_EVENT_TIMEOUT:
if (m_tx_retry_counter != MAX_RETRY_COUNT)
{
++m_tx_retry_counter;
// @note: no return value check done for hci_slip_write(...) call as current
// system design allows use case where retransmission is not accepted by the
// slip layer due to existing acknowledgement packet transmission in the
// slip layer.
UNUSED_VARIABLE(hci_slip_write(mp_tx_buffer,
(m_tx_buffer_length +
PKT_HDR_SIZE +
PKT_CRC_SIZE)));
}
else
{
// Application packet retransmission count reached:
// - set correct TX done event callback function result code
// - execute state change
// @note: m_tx_retry_counter is reset in TX_STATE_ACTIVE state entry.
m_tx_done_result_code = HCI_TRANSPORT_TX_DONE_FAILURE;
tx_sm_state_change(TX_STATE_IDLE);
}
break;
default:
// No implementation needed.
break;
}
break;
default:
// No implementation needed.
break;
}
}
/**@brief Function for changing the state of the TX state machine.
*
* @param[in] new_state State TX state machine transits to.
*/
static void tx_sm_state_change(tx_state_t new_state)
{
m_tx_state = new_state;
tx_sm_event_handle(TX_EVENT_STATE_ENTRY);
}
/**@brief Function for handling slip events.
*
* @param[in] event The event structure.
*/
void slip_event_handle(hci_slip_evt_t event)
{
uint32_t return_code;
uint32_t err_code;
switch (event.evt_type)
{
case HCI_SLIP_TX_DONE:
tx_sm_event_handle(TX_EVENT_SLIP_TX_DONE);
break;
case HCI_SLIP_RX_RDY:
return_code = packet_type_decode(event.packet, event.packet_length);
switch (return_code)
{
case PKT_TYPE_VENDOR_SPECIFIC:
rx_vendor_specific_pkt_type_handle(event.packet, event.packet_length);
break;
case PKT_TYPE_ACK:
if (rx_ack_pkt_type_handle(event.packet))
{
// Valid expected acknowledgement packet received: set correct TX done event
// callback function result code and execute state change.
m_tx_done_result_code = HCI_TRANSPORT_TX_DONE_SUCCESS;
tx_sm_event_handle(TX_EVENT_VALID_RX_ACK);
}
/* fall-through */
default:
// RX packet dropped: reset memory buffer to slip in order to avoid RX buffer
// overflow.
// If existing mem pool produced RX buffer exists reuse that one. If existing
// mem pool produced RX buffer does not exist try to produce new one. If
// producing fails use the internal acknowledgement buffer.
if (mp_slip_used_rx_buffer != NULL)
{
err_code = hci_slip_rx_buffer_register(mp_slip_used_rx_buffer, HCI_RX_BUF_SIZE);
APP_ERROR_CHECK(err_code);
}
else
{
err_code = hci_mem_pool_rx_produce(HCI_RX_BUF_SIZE,
(void **)&mp_slip_used_rx_buffer);
APP_ERROR_CHECK_BOOL((err_code == NRF_SUCCESS) ||
(err_code == NRF_ERROR_NO_MEM));
err_code = hci_slip_rx_buffer_register(
(err_code == NRF_SUCCESS) ? mp_slip_used_rx_buffer : m_rx_ack_buffer,
(err_code == NRF_SUCCESS) ? HCI_RX_BUF_SIZE : ACK_BUF_SIZE);
APP_ERROR_CHECK(err_code);
}
break;
}
break;
case HCI_SLIP_RX_OVERFLOW:
err_code = hci_slip_rx_buffer_register(m_rx_ack_buffer, ACK_BUF_SIZE);
APP_ERROR_CHECK(err_code);
break;
case HCI_SLIP_ERROR:
APP_ERROR_HANDLER(event.evt_type);
break;
default:
APP_ERROR_HANDLER(event.evt_type);
break;
}
}
uint32_t hci_transport_evt_handler_reg(hci_transport_event_handler_t event_handler)
{
uint32_t err_code;
m_transport_event_handle = event_handler;
err_code = hci_slip_evt_handler_register(slip_event_handle);
APP_ERROR_CHECK(err_code);
return (event_handler != NULL) ? NRF_SUCCESS : NRF_ERROR_NULL;
}
uint32_t hci_transport_tx_done_register(hci_transport_tx_done_handler_t event_handler)
{
uint32_t err_code;
m_transport_tx_done_handle = event_handler;
err_code = hci_slip_evt_handler_register(slip_event_handle);
APP_ERROR_CHECK(err_code);
return (event_handler != NULL) ? NRF_SUCCESS : NRF_ERROR_NULL;
}
/**@brief Function for handling the application packet retransmission timeout.
*
* This function is registered in the @ref app_timer module when a timer is created on
* @ref hci_transport_open.
*
* @note This function must be executed in APP-LO context otherwise retransmission behaviour is
* undefined, see @ref nrf51_system_integration_serialization.
*
* @param[in] p_context The timeout context.
*/
void hci_transport_timeout_handle(void * p_context)
{
tx_sm_event_handle(TX_EVENT_TIMEOUT);
}
uint32_t hci_transport_open(void)
{
mp_tx_buffer = NULL;
m_tx_buffer_length = 0;
m_tx_retry_counter = 0;
m_is_slip_decode_ready = false;
m_tx_state = TX_STATE_IDLE;
m_packet_expected_seq_number = INITIAL_ACK_NUMBER_EXPECTED;
m_packet_transmit_seq_number = INITIAL_ACK_NUMBER_TX;
m_tx_done_result_code = HCI_TRANSPORT_TX_DONE_FAILURE;
uint32_t err_code = app_timer_create(&m_app_timer_id,
APP_TIMER_MODE_REPEATED,
hci_transport_timeout_handle);
if (err_code != NRF_SUCCESS)
{
// @note: conduct required interface adjustment.
return NRF_ERROR_INTERNAL;
}
err_code = hci_mem_pool_open();
VERIFY_SUCCESS(err_code);
err_code = hci_slip_open();
VERIFY_SUCCESS(err_code);
err_code = hci_mem_pool_rx_produce(HCI_RX_BUF_SIZE, (void **)&mp_slip_used_rx_buffer);
if (err_code != NRF_SUCCESS)
{
// @note: conduct required interface adjustment.
return NRF_ERROR_INTERNAL;
}
err_code = hci_slip_rx_buffer_register(mp_slip_used_rx_buffer, HCI_RX_BUF_SIZE);
return err_code;
}
uint32_t hci_transport_close(void)
{
uint32_t err_code;
m_transport_tx_done_handle = NULL;
m_transport_event_handle = NULL;
err_code = hci_mem_pool_close();
APP_ERROR_CHECK(err_code);
err_code = hci_slip_close();
APP_ERROR_CHECK(err_code);
// @note: NRF_ERROR_NO_MEM is the only return value which should never be returned.
err_code = app_timer_stop(m_app_timer_id);
APP_ERROR_CHECK_BOOL(err_code != NRF_ERROR_NO_MEM);
return NRF_SUCCESS;
}
uint32_t hci_transport_tx_alloc(uint8_t ** pp_memory)
{
const uint32_t err_code = hci_mem_pool_tx_alloc((void **)pp_memory);
if (err_code == NRF_SUCCESS)
{
// @note: no need to validate pp_memory against null as validation has already been done
// by hci_mem_pool_tx_alloc(...) and visible to us from the method return code.
//lint -e(413) "Likely use of null pointer"
*pp_memory += PKT_HDR_SIZE;
}
return err_code;
}
uint32_t hci_transport_tx_free(void)
{
return hci_mem_pool_tx_free();
}
/**@brief Function for constructing 1st byte of the packet header of the packet to be transmitted.
*
* @return 1st byte of the packet header of the packet to be transmitted
*/
static __INLINE uint8_t tx_packet_byte_zero_construct(void)
{
const uint32_t value = DATA_INTEGRITY_MASK |
RELIABLE_PKT_MASK |
(packet_number_expected_get() << 3u) |
packet_number_to_transmit_get();
return (uint8_t) value;
}
/**@brief Function for handling the application packet write request in tx-idle state.
*/
static uint32_t pkt_write_handle(void)
{
uint32_t err_code;
// Set packet header fields.
mp_tx_buffer -= PKT_HDR_SIZE;
mp_tx_buffer[0] = tx_packet_byte_zero_construct();
const uint16_t type_and_length_fields = ((m_tx_buffer_length << 4u) | PKT_TYPE_VENDOR_SPECIFIC);
// @note: no use case for uint16_encode(...) return value.
UNUSED_VARIABLE(uint16_encode(type_and_length_fields, &(mp_tx_buffer[1])));
mp_tx_buffer[3] = header_checksum_calculate(mp_tx_buffer);
// Calculate, append CRC to the packet and write it.
const uint16_t crc = crc16_compute(mp_tx_buffer, (PKT_HDR_SIZE + m_tx_buffer_length), NULL);
// @note: no use case for uint16_encode(...) return value.
UNUSED_VARIABLE(uint16_encode(crc, &(mp_tx_buffer[PKT_HDR_SIZE + m_tx_buffer_length])));
err_code = hci_slip_write(mp_tx_buffer, (m_tx_buffer_length + PKT_HDR_SIZE + PKT_CRC_SIZE));
switch (err_code)
{
case NRF_SUCCESS:
tx_sm_state_change(TX_STATE_ACTIVE);
break;
case NRF_ERROR_NO_MEM:
tx_sm_state_change(TX_STATE_PENDING);
err_code = NRF_SUCCESS;
break;
default:
// No implementation needed.
break;
}
return err_code;
}
uint32_t hci_transport_pkt_write(const uint8_t * p_buffer, uint16_t length)
{
uint32_t err_code;
if (p_buffer)
{
switch (m_tx_state)
{
case TX_STATE_IDLE:
mp_tx_buffer = (uint8_t *)p_buffer;
m_tx_buffer_length = length;
err_code = pkt_write_handle();
break;
default:
err_code = NRF_ERROR_NO_MEM;
break;
}
}
else
{
err_code = NRF_ERROR_NULL;
}
return err_code;
}
uint32_t hci_transport_rx_pkt_extract(uint8_t ** pp_buffer, uint16_t * p_length)
{
uint32_t err_code;
if (pp_buffer != NULL && p_length != NULL)
{
uint32_t length = 0;
if (m_is_slip_decode_ready)
{
m_is_slip_decode_ready = false;
err_code = hci_mem_pool_rx_extract(pp_buffer, &length);
length -= (PKT_HDR_SIZE + PKT_CRC_SIZE);
*p_length = (uint16_t)length;
*pp_buffer += PKT_HDR_SIZE;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
else
{
err_code = NRF_ERROR_NULL;
}
return err_code;
}
uint32_t hci_transport_rx_pkt_consume(uint8_t * p_buffer)
{
return (hci_mem_pool_rx_consume(p_buffer - PKT_HDR_SIZE));
}
#endif //NRF_MODULE_ENABLED(HCI_TRANSPORT)