simmel-bootloader/lib/sdk/components/libraries/hci/hci_mem_pool.c

265 lines
9.1 KiB
C

/**
* Copyright (c) 2013 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(HCI_MEM_POOL)
#include "hci_mem_pool.h"
#include <stdbool.h>
#include <stdio.h>
/**@brief RX buffer element instance structure.
*/
typedef struct
{
uint8_t rx_buffer[HCI_RX_BUF_SIZE]; /**< RX buffer memory array. */
uint32_t length; /**< Length of the RX buffer memory array. */
} rx_buffer_elem_t;
/**@brief RX buffer queue element instance structure.
*/
typedef struct
{
rx_buffer_elem_t * p_buffer; /**< Pointer to RX buffer element. */
uint32_t free_window_count; /**< Free space element count. */
uint32_t free_available_count; /**< Free area element count. */
uint32_t read_available_count; /**< Read area element count. */
uint32_t write_index; /**< Write position index. */
uint32_t read_index; /**< Read position index. */
uint32_t free_index; /**< Free position index. */
} rx_buffer_queue_t;
static bool m_is_tx_allocated; /**< Boolean value to determine if the TX buffer is allocated. */
static rx_buffer_elem_t m_rx_buffer_elem_queue[HCI_RX_BUF_QUEUE_SIZE]; /**< RX buffer element instances. */
static rx_buffer_queue_t m_rx_buffer_queue; /**< RX buffer queue element instance. */
uint32_t hci_mem_pool_open(void)
{
m_is_tx_allocated = false;
m_rx_buffer_queue.p_buffer = m_rx_buffer_elem_queue;
m_rx_buffer_queue.free_window_count = HCI_RX_BUF_QUEUE_SIZE;
m_rx_buffer_queue.free_available_count = 0;
m_rx_buffer_queue.read_available_count = 0;
m_rx_buffer_queue.write_index = 0;
m_rx_buffer_queue.read_index = 0;
m_rx_buffer_queue.free_index = 0;
return NRF_SUCCESS;
}
uint32_t hci_mem_pool_close(void)
{
return NRF_SUCCESS;
}
uint32_t hci_mem_pool_tx_alloc(void ** pp_buffer)
{
static uint8_t tx_buffer[HCI_TX_BUF_SIZE];
uint32_t err_code;
if (pp_buffer == NULL)
{
return NRF_ERROR_NULL;
}
if (!m_is_tx_allocated)
{
m_is_tx_allocated = true;
*pp_buffer = tx_buffer;
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
return err_code;
}
uint32_t hci_mem_pool_tx_free(void)
{
m_is_tx_allocated = false;
return NRF_SUCCESS;
}
uint32_t hci_mem_pool_rx_produce(uint32_t length, void ** pp_buffer)
{
uint32_t err_code;
if (pp_buffer == NULL)
{
return NRF_ERROR_NULL;
}
*pp_buffer = NULL;
if (m_rx_buffer_queue.free_window_count != 0)
{
if (length <= HCI_RX_BUF_SIZE)
{
--(m_rx_buffer_queue.free_window_count);
++(m_rx_buffer_queue.read_available_count);
*pp_buffer =
m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.write_index].rx_buffer;
m_rx_buffer_queue.free_index |= (1u << m_rx_buffer_queue.write_index);
// @note: Adjust the write_index making use of the fact that the buffer size is of
// power of two and two's complement arithmetic. For details refer example to book
// "Making embedded systems: Elicia White".
m_rx_buffer_queue.write_index =
(m_rx_buffer_queue.write_index + 1u) & (HCI_RX_BUF_QUEUE_SIZE - 1u);
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_DATA_SIZE;
}
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
return err_code;
}
uint32_t hci_mem_pool_rx_consume(uint8_t * p_buffer)
{
uint32_t err_code;
uint32_t consume_index;
uint32_t start_index;
if (m_rx_buffer_queue.free_available_count != 0)
{
// Find the buffer that has been freed -
// Start at read_index minus free_available_count and then increment until read index.
err_code = NRF_ERROR_INVALID_ADDR;
consume_index = (m_rx_buffer_queue.read_index - m_rx_buffer_queue.free_available_count) &
(HCI_RX_BUF_QUEUE_SIZE - 1u);
start_index = consume_index;
do
{
if (m_rx_buffer_queue.p_buffer[consume_index].rx_buffer == p_buffer)
{
m_rx_buffer_queue.free_index ^= (1u << consume_index);
err_code = NRF_SUCCESS;
break;
}
else
{
consume_index = (consume_index + 1u) & (HCI_RX_BUF_QUEUE_SIZE - 1u);
}
}
while (consume_index != m_rx_buffer_queue.read_index);
while (!(m_rx_buffer_queue.free_index & (1 << start_index)) &&
(m_rx_buffer_queue.free_available_count != 0))
{
--(m_rx_buffer_queue.free_available_count);
++(m_rx_buffer_queue.free_window_count);
start_index = (consume_index + 1u) & (HCI_RX_BUF_QUEUE_SIZE - 1u);
}
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
return err_code;
}
uint32_t hci_mem_pool_rx_data_size_set(uint32_t length)
{
// @note: Adjust the write_index making use of the fact that the buffer size is of power
// of two and two's complement arithmetic. For details refer example to book
// "Making embedded systems: Elicia White".
const uint32_t index = (m_rx_buffer_queue.write_index - 1u) & (HCI_RX_BUF_QUEUE_SIZE - 1u);
m_rx_buffer_queue.p_buffer[index].length = length;
return NRF_SUCCESS;
}
uint32_t hci_mem_pool_rx_extract(uint8_t ** pp_buffer, uint32_t * p_length)
{
uint32_t err_code;
if ((pp_buffer == NULL) || (p_length == NULL))
{
return NRF_ERROR_NULL;
}
if (m_rx_buffer_queue.read_available_count != 0)
{
--(m_rx_buffer_queue.read_available_count);
++(m_rx_buffer_queue.free_available_count);
*pp_buffer =
m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].rx_buffer;
*p_length =
m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].length;
// @note: Adjust the write_index making use of the fact that the buffer size is of power
// of two and two's complement arithmetic. For details refer example to book
// "Making embedded systems: Elicia White".
m_rx_buffer_queue.read_index =
(m_rx_buffer_queue.read_index + 1u) & (HCI_RX_BUF_QUEUE_SIZE - 1u);
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
return err_code;
}
#endif //NRF_MODULE_ENABLED(HCI_MEM_POOL)