simmel-bootloader/lib/sdk/components/drivers_nrf/hal/nrf_uarte.h
hathach df71d3444d follow #1
seperate files from latest SDK (currently 14.2.0) from good old non-
secure bootloader sdk 11
2018-04-05 00:35:08 +07:00

610 lines
22 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_UARTE_H__
#define NRF_UARTE_H__
#include "nrf.h"
#include "nrf_peripherals.h"
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
#define NRF_UARTE_PSEL_DISCONNECTED 0xFFFFFFFF
/**
* @defgroup nrf_uarte_hal UARTE HAL
* @{
* @ingroup nrf_uart
*
* @brief Hardware access layer for accessing the UARTE peripheral.
*/
/**
* @enum nrf_uarte_task_t
* @brief UARTE tasks.
*/
typedef enum
{
/*lint -save -e30*/
NRF_UARTE_TASK_STARTRX = offsetof(NRF_UARTE_Type, TASKS_STARTRX),///< Start UART receiver.
NRF_UARTE_TASK_STOPRX = offsetof(NRF_UARTE_Type, TASKS_STOPRX), ///< Stop UART receiver.
NRF_UARTE_TASK_STARTTX = offsetof(NRF_UARTE_Type, TASKS_STARTTX),///< Start UART transmitter.
NRF_UARTE_TASK_STOPTX = offsetof(NRF_UARTE_Type, TASKS_STOPTX), ///< Stop UART transmitter.
NRF_UARTE_TASK_FLUSHRX = offsetof(NRF_UARTE_Type, TASKS_FLUSHRX) ///< Flush RX FIFO in RX buffer.
/*lint -restore*/
} nrf_uarte_task_t;
/**
* @enum nrf_uarte_event_t
* @brief UARTE events.
*/
typedef enum
{
/*lint -save -e30*/
NRF_UARTE_EVENT_CTS = offsetof(NRF_UARTE_Type, EVENTS_CTS), ///< CTS is activated.
NRF_UARTE_EVENT_NCTS = offsetof(NRF_UARTE_Type, EVENTS_NCTS), ///< CTS is deactivated.
NRF_UARTE_EVENT_ENDRX = offsetof(NRF_UARTE_Type, EVENTS_ENDRX), ///< Receive buffer is filled up.
NRF_UARTE_EVENT_ENDTX = offsetof(NRF_UARTE_Type, EVENTS_ENDTX), ///< Last TX byte transmitted.
NRF_UARTE_EVENT_ERROR = offsetof(NRF_UARTE_Type, EVENTS_ERROR), ///< Error detected.
NRF_UARTE_EVENT_RXTO = offsetof(NRF_UARTE_Type, EVENTS_RXTO), ///< Receiver timeout.
NRF_UARTE_EVENT_RXSTARTED = offsetof(NRF_UARTE_Type, EVENTS_RXSTARTED),///< Receiver has started.
NRF_UARTE_EVENT_TXSTARTED = offsetof(NRF_UARTE_Type, EVENTS_TXSTARTED),///< Transmitter has started.
NRF_UARTE_EVENT_TXSTOPPED = offsetof(NRF_UARTE_Type, EVENTS_TXSTOPPED) ///< Transmitted stopped.
/*lint -restore*/
} nrf_uarte_event_t;
/**
* @brief Types of UARTE shortcuts.
*/
typedef enum
{
NRF_UARTE_SHORT_ENDRX_STARTRX = UARTE_SHORTS_ENDRX_STARTRX_Msk,///< Shortcut between ENDRX event and STARTRX task.
NRF_UARTE_SHORT_ENDRX_STOPRX = UARTE_SHORTS_ENDRX_STOPRX_Msk, ///< Shortcut between ENDRX event and STOPRX task.
} nrf_uarte_short_t;
/**
* @enum nrf_uarte_int_mask_t
* @brief UARTE interrupts.
*/
typedef enum
{
NRF_UARTE_INT_CTS_MASK = UARTE_INTENSET_CTS_Msk, ///< Interrupt on CTS event.
NRF_UARTE_INT_NCTSRX_MASK = UARTE_INTENSET_NCTS_Msk, ///< Interrupt on NCTS event.
NRF_UARTE_INT_ENDRX_MASK = UARTE_INTENSET_ENDRX_Msk, ///< Interrupt on ENDRX event.
NRF_UARTE_INT_ENDTX_MASK = UARTE_INTENSET_ENDTX_Msk, ///< Interrupt on ENDTX event.
NRF_UARTE_INT_ERROR_MASK = UARTE_INTENSET_ERROR_Msk, ///< Interrupt on ERROR event.
NRF_UARTE_INT_RXTO_MASK = UARTE_INTENSET_RXTO_Msk, ///< Interrupt on RXTO event.
NRF_UARTE_INT_RXSTARTED_MASK = UARTE_INTENSET_RXSTARTED_Msk,///< Interrupt on RXSTARTED event.
NRF_UARTE_INT_TXSTARTED_MASK = UARTE_INTENSET_TXSTARTED_Msk,///< Interrupt on TXSTARTED event.
NRF_UARTE_INT_TXSTOPPED_MASK = UARTE_INTENSET_TXSTOPPED_Msk ///< Interrupt on TXSTOPPED event.
} nrf_uarte_int_mask_t;
/**
* @enum nrf_uarte_baudrate_t
* @brief Baudrates supported by UARTE.
*/
typedef enum
{
NRF_UARTE_BAUDRATE_1200 = UARTE_BAUDRATE_BAUDRATE_Baud1200, ///< 1200 baud.
NRF_UARTE_BAUDRATE_2400 = UARTE_BAUDRATE_BAUDRATE_Baud2400, ///< 2400 baud.
NRF_UARTE_BAUDRATE_4800 = UARTE_BAUDRATE_BAUDRATE_Baud4800, ///< 4800 baud.
NRF_UARTE_BAUDRATE_9600 = UARTE_BAUDRATE_BAUDRATE_Baud9600, ///< 9600 baud.
NRF_UARTE_BAUDRATE_14400 = UARTE_BAUDRATE_BAUDRATE_Baud14400, ///< 14400 baud.
NRF_UARTE_BAUDRATE_19200 = UARTE_BAUDRATE_BAUDRATE_Baud19200, ///< 19200 baud.
NRF_UARTE_BAUDRATE_28800 = UARTE_BAUDRATE_BAUDRATE_Baud28800, ///< 28800 baud.
NRF_UARTE_BAUDRATE_38400 = UARTE_BAUDRATE_BAUDRATE_Baud38400, ///< 38400 baud.
NRF_UARTE_BAUDRATE_57600 = UARTE_BAUDRATE_BAUDRATE_Baud57600, ///< 57600 baud.
NRF_UARTE_BAUDRATE_76800 = UARTE_BAUDRATE_BAUDRATE_Baud76800, ///< 76800 baud.
NRF_UARTE_BAUDRATE_115200 = UARTE_BAUDRATE_BAUDRATE_Baud115200, ///< 115200 baud.
NRF_UARTE_BAUDRATE_230400 = UARTE_BAUDRATE_BAUDRATE_Baud230400, ///< 230400 baud.
NRF_UARTE_BAUDRATE_250000 = UARTE_BAUDRATE_BAUDRATE_Baud250000, ///< 250000 baud.
NRF_UARTE_BAUDRATE_460800 = UARTE_BAUDRATE_BAUDRATE_Baud460800, ///< 460800 baud.
NRF_UARTE_BAUDRATE_921600 = UARTE_BAUDRATE_BAUDRATE_Baud921600, ///< 921600 baud.
NRF_UARTE_BAUDRATE_1000000 = UARTE_BAUDRATE_BAUDRATE_Baud1M, ///< 1000000 baud.
#ifndef UART_PRESENT
NRF_UART_BAUDRATE_1200 = NRF_UARTE_BAUDRATE_1200,
NRF_UART_BAUDRATE_2400 = NRF_UARTE_BAUDRATE_2400,
NRF_UART_BAUDRATE_4800 = NRF_UARTE_BAUDRATE_4800,
NRF_UART_BAUDRATE_9600 = NRF_UARTE_BAUDRATE_9600,
NRF_UART_BAUDRATE_14400 = NRF_UARTE_BAUDRATE_14400,
NRF_UART_BAUDRATE_19200 = NRF_UARTE_BAUDRATE_19200,
NRF_UART_BAUDRATE_28800 = NRF_UARTE_BAUDRATE_28800,
NRF_UART_BAUDRATE_38400 = NRF_UARTE_BAUDRATE_38400,
NRF_UART_BAUDRATE_57600 = NRF_UARTE_BAUDRATE_57600,
NRF_UART_BAUDRATE_76800 = NRF_UARTE_BAUDRATE_76800,
NRF_UART_BAUDRATE_115200 = NRF_UARTE_BAUDRATE_115200,
NRF_UART_BAUDRATE_230400 = NRF_UARTE_BAUDRATE_230400,
NRF_UART_BAUDRATE_250000 = NRF_UARTE_BAUDRATE_250000,
NRF_UART_BAUDRATE_460800 = NRF_UARTE_BAUDRATE_460800,
NRF_UART_BAUDRATE_921600 = NRF_UARTE_BAUDRATE_921600,
NRF_UART_BAUDRATE_1000000 = NRF_UARTE_BAUDRATE_1000000,
#endif
} nrf_uarte_baudrate_t;
/**
* @enum nrf_uarte_error_mask_t
* @brief Types of UARTE error masks.
*/
typedef enum
{
NRF_UARTE_ERROR_OVERRUN_MASK = UARTE_ERRORSRC_OVERRUN_Msk, ///< Overrun error.
NRF_UARTE_ERROR_PARITY_MASK = UARTE_ERRORSRC_PARITY_Msk, ///< Parity error.
NRF_UARTE_ERROR_FRAMING_MASK = UARTE_ERRORSRC_FRAMING_Msk, ///< Framing error.
NRF_UARTE_ERROR_BREAK_MASK = UARTE_ERRORSRC_BREAK_Msk, ///< Break error.
#ifndef UART_PRESENT
NRF_UART_ERROR_OVERRUN_MASK = NRF_UARTE_ERROR_OVERRUN_MASK,
NRF_UART_ERROR_PARITY_MASK = NRF_UARTE_ERROR_PARITY_MASK,
NRF_UART_ERROR_FRAMING_MASK = NRF_UARTE_ERROR_FRAMING_MASK,
NRF_UART_ERROR_BREAK_MASK = NRF_UARTE_ERROR_BREAK_MASK,
#endif
} nrf_uarte_error_mask_t;
/**
* @enum nrf_uarte_parity_t
* @brief Types of UARTE parity modes.
*/
typedef enum
{
NRF_UARTE_PARITY_EXCLUDED = UARTE_CONFIG_PARITY_Excluded << UARTE_CONFIG_PARITY_Pos, ///< Parity excluded.
NRF_UARTE_PARITY_INCLUDED = UARTE_CONFIG_PARITY_Included << UARTE_CONFIG_PARITY_Pos, ///< Parity included.
#ifndef UART_PRESENT
NRF_UART_PARITY_EXCLUDED = NRF_UARTE_PARITY_EXCLUDED,
NRF_UART_PARITY_INCLUDED = NRF_UARTE_PARITY_INCLUDED,
#endif
} nrf_uarte_parity_t;
/**
* @enum nrf_uarte_hwfc_t
* @brief Types of UARTE flow control modes.
*/
typedef enum
{
NRF_UARTE_HWFC_DISABLED = UARTE_CONFIG_HWFC_Disabled << UARTE_CONFIG_HWFC_Pos, ///< HW flow control disabled.
NRF_UARTE_HWFC_ENABLED = UARTE_CONFIG_HWFC_Enabled << UARTE_CONFIG_HWFC_Pos, ///< HW flow control enabled.
#ifndef UART_PRESENT
NRF_UART_HWFC_DISABLED = NRF_UARTE_HWFC_DISABLED,
NRF_UART_HWFC_ENABLED = NRF_UARTE_HWFC_ENABLED,
#endif
} nrf_uarte_hwfc_t;
/**
* @brief Function for clearing a specific UARTE event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_uarte_event_clear(NRF_UARTE_Type * p_reg, nrf_uarte_event_t event);
/**
* @brief Function for checking the state of a specific UARTE event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to check.
*
* @retval True if event is set, False otherwise.
*/
__STATIC_INLINE bool nrf_uarte_event_check(NRF_UARTE_Type * p_reg, nrf_uarte_event_t event);
/**
* @brief Function for returning the address of a specific UARTE event register.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Desired event.
*
* @retval Address of specified event register.
*/
__STATIC_INLINE uint32_t nrf_uarte_event_address_get(NRF_UARTE_Type * p_reg,
nrf_uarte_event_t event);
/**
* @brief Function for enabling UARTE shortcuts.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param shorts_mask Shortcuts to enable.
*/
__STATIC_INLINE void nrf_uarte_shorts_enable(NRF_UARTE_Type * p_reg, uint32_t shorts_mask);
/**
* @brief Function for disabling UARTE shortcuts.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param shorts_mask Shortcuts to disable.
*/
__STATIC_INLINE void nrf_uarte_shorts_disable(NRF_UARTE_Type * p_reg, uint32_t shorts_mask);
/**
* @brief Function for enabling UARTE interrupts.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param int_mask Interrupts to enable.
*/
__STATIC_INLINE void nrf_uarte_int_enable(NRF_UARTE_Type * p_reg, uint32_t int_mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param int_mask Mask of interrupt to check.
*
* @retval true If the interrupt is enabled.
* @retval false If the interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_uarte_int_enable_check(NRF_UARTE_Type * p_reg, nrf_uarte_int_mask_t int_mask);
/**
* @brief Function for disabling specific interrupts.
*
* @param p_reg Instance.
* @param int_mask Interrupts to disable.
*/
__STATIC_INLINE void nrf_uarte_int_disable(NRF_UARTE_Type * p_reg, uint32_t int_mask);
/**
* @brief Function for getting error source mask. Function is clearing error source flags after reading.
*
* @param p_reg Pointer to the peripheral registers structure.
* @return Mask with error source flags.
*/
__STATIC_INLINE uint32_t nrf_uarte_errorsrc_get_and_clear(NRF_UARTE_Type * p_reg);
/**
* @brief Function for enabling UARTE.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uarte_enable(NRF_UARTE_Type * p_reg);
/**
* @brief Function for disabling UARTE.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uarte_disable(NRF_UARTE_Type * p_reg);
/**
* @brief Function for configuring TX/RX pins.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param pseltxd TXD pin number.
* @param pselrxd RXD pin number.
*/
__STATIC_INLINE void nrf_uarte_txrx_pins_set(NRF_UARTE_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd);
/**
* @brief Function for disconnecting TX/RX pins.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uarte_txrx_pins_disconnect(NRF_UARTE_Type * p_reg);
/**
* @brief Function for getting TX pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uarte_tx_pin_get(NRF_UARTE_Type * p_reg);
/**
* @brief Function for getting RX pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uarte_rx_pin_get(NRF_UARTE_Type * p_reg);
/**
* @brief Function for getting RTS pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uarte_rts_pin_get(NRF_UARTE_Type * p_reg);
/**
* @brief Function for getting CTS pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uarte_cts_pin_get(NRF_UARTE_Type * p_reg);
/**
* @brief Function for configuring flow control pins.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param pselrts RTS pin number.
* @param pselcts CTS pin number.
*/
__STATIC_INLINE void nrf_uarte_hwfc_pins_set(NRF_UARTE_Type * p_reg,
uint32_t pselrts,
uint32_t pselcts);
/**
* @brief Function for disconnecting flow control pins.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uarte_hwfc_pins_disconnect(NRF_UARTE_Type * p_reg);
/**
* @brief Function for starting an UARTE task.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param task Task.
*/
__STATIC_INLINE void nrf_uarte_task_trigger(NRF_UARTE_Type * p_reg, nrf_uarte_task_t task);
/**
* @brief Function for returning the address of a specific task register.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param task Task.
*
* @return Task address.
*/
__STATIC_INLINE uint32_t nrf_uarte_task_address_get(NRF_UARTE_Type * p_reg, nrf_uarte_task_t task);
/**
* @brief Function for configuring UARTE.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param hwfc Hardware flow control. Enabled if true.
* @param parity Parity. Included if true.
*/
__STATIC_INLINE void nrf_uarte_configure(NRF_UARTE_Type * p_reg,
nrf_uarte_parity_t parity,
nrf_uarte_hwfc_t hwfc);
/**
* @brief Function for setting UARTE baudrate.
*
* @param p_reg Instance.
* @param baudrate Baudrate.
*/
__STATIC_INLINE void nrf_uarte_baudrate_set(NRF_UARTE_Type * p_reg, nrf_uarte_baudrate_t baudrate);
/**
* @brief Function for setting the transmit buffer.
*
* @param[in] p_reg Instance.
* @param[in] p_buffer Pointer to the buffer with data to send.
* @param[in] length Maximum number of data bytes to transmit.
*/
__STATIC_INLINE void nrf_uarte_tx_buffer_set(NRF_UARTE_Type * p_reg,
uint8_t const * p_buffer,
uint8_t length);
/**
* @brief Function for getting number of bytes transmitted in the last transaction.
*
* @param[in] p_reg Instance.
*
* @retval Amount of bytes transmitted.
*/
__STATIC_INLINE uint32_t nrf_uarte_tx_amount_get(NRF_UARTE_Type * p_reg);
/**
* @brief Function for setting the receive buffer.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] p_buffer Pointer to the buffer for received data.
* @param[in] length Maximum number of data bytes to receive.
*/
__STATIC_INLINE void nrf_uarte_rx_buffer_set(NRF_UARTE_Type * p_reg,
uint8_t * p_buffer,
uint8_t length);
/**
* @brief Function for getting number of bytes received in the last transaction.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
*
* @retval Amount of bytes received.
*/
__STATIC_INLINE uint32_t nrf_uarte_rx_amount_get(NRF_UARTE_Type * p_reg);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_uarte_event_clear(NRF_UARTE_Type * p_reg, nrf_uarte_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
(void)dummy;
#endif
}
__STATIC_INLINE bool nrf_uarte_event_check(NRF_UARTE_Type * p_reg, nrf_uarte_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE uint32_t nrf_uarte_event_address_get(NRF_UARTE_Type * p_reg,
nrf_uarte_event_t event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE void nrf_uarte_shorts_enable(NRF_UARTE_Type * p_reg, uint32_t shorts_mask)
{
p_reg->SHORTS |= shorts_mask;
}
__STATIC_INLINE void nrf_uarte_shorts_disable(NRF_UARTE_Type * p_reg, uint32_t shorts_mask)
{
p_reg->SHORTS &= ~(shorts_mask);
}
__STATIC_INLINE void nrf_uarte_int_enable(NRF_UARTE_Type * p_reg, uint32_t int_mask)
{
p_reg->INTENSET = int_mask;
}
__STATIC_INLINE bool nrf_uarte_int_enable_check(NRF_UARTE_Type * p_reg, nrf_uarte_int_mask_t int_mask)
{
return (bool)(p_reg->INTENSET & int_mask);
}
__STATIC_INLINE void nrf_uarte_int_disable(NRF_UARTE_Type * p_reg, uint32_t int_mask)
{
p_reg->INTENCLR = int_mask;
}
__STATIC_INLINE uint32_t nrf_uarte_errorsrc_get_and_clear(NRF_UARTE_Type * p_reg)
{
uint32_t errsrc_mask = p_reg->ERRORSRC;
p_reg->ERRORSRC = errsrc_mask;
return errsrc_mask;
}
__STATIC_INLINE void nrf_uarte_enable(NRF_UARTE_Type * p_reg)
{
p_reg->ENABLE = UARTE_ENABLE_ENABLE_Enabled;
}
__STATIC_INLINE void nrf_uarte_disable(NRF_UARTE_Type * p_reg)
{
p_reg->ENABLE = UARTE_ENABLE_ENABLE_Disabled;
}
__STATIC_INLINE void nrf_uarte_txrx_pins_set(NRF_UARTE_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd)
{
p_reg->PSEL.TXD = pseltxd;
p_reg->PSEL.RXD = pselrxd;
}
__STATIC_INLINE void nrf_uarte_txrx_pins_disconnect(NRF_UARTE_Type * p_reg)
{
nrf_uarte_txrx_pins_set(p_reg, NRF_UARTE_PSEL_DISCONNECTED, NRF_UARTE_PSEL_DISCONNECTED);
}
__STATIC_INLINE uint32_t nrf_uarte_tx_pin_get(NRF_UARTE_Type * p_reg)
{
return p_reg->PSEL.TXD;
}
__STATIC_INLINE uint32_t nrf_uarte_rx_pin_get(NRF_UARTE_Type * p_reg)
{
return p_reg->PSEL.RXD;
}
__STATIC_INLINE uint32_t nrf_uarte_rts_pin_get(NRF_UARTE_Type * p_reg)
{
return p_reg->PSEL.RTS;
}
__STATIC_INLINE uint32_t nrf_uarte_cts_pin_get(NRF_UARTE_Type * p_reg)
{
return p_reg->PSEL.CTS;
}
__STATIC_INLINE void nrf_uarte_hwfc_pins_set(NRF_UARTE_Type * p_reg, uint32_t pselrts, uint32_t pselcts)
{
p_reg->PSEL.RTS = pselrts;
p_reg->PSEL.CTS = pselcts;
}
__STATIC_INLINE void nrf_uarte_hwfc_pins_disconnect(NRF_UARTE_Type * p_reg)
{
nrf_uarte_hwfc_pins_set(p_reg, NRF_UARTE_PSEL_DISCONNECTED, NRF_UARTE_PSEL_DISCONNECTED);
}
__STATIC_INLINE void nrf_uarte_task_trigger(NRF_UARTE_Type * p_reg, nrf_uarte_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
__STATIC_INLINE uint32_t nrf_uarte_task_address_get(NRF_UARTE_Type * p_reg, nrf_uarte_task_t task)
{
return (uint32_t)p_reg + (uint32_t)task;
}
__STATIC_INLINE void nrf_uarte_configure(NRF_UARTE_Type * p_reg,
nrf_uarte_parity_t parity,
nrf_uarte_hwfc_t hwfc)
{
p_reg->CONFIG = (uint32_t)parity | (uint32_t)hwfc;
}
__STATIC_INLINE void nrf_uarte_baudrate_set(NRF_UARTE_Type * p_reg, nrf_uarte_baudrate_t baudrate)
{
p_reg->BAUDRATE = baudrate;
}
__STATIC_INLINE void nrf_uarte_tx_buffer_set(NRF_UARTE_Type * p_reg,
uint8_t const * p_buffer,
uint8_t length)
{
p_reg->TXD.PTR = (uint32_t)p_buffer;
p_reg->TXD.MAXCNT = length;
}
__STATIC_INLINE uint32_t nrf_uarte_tx_amount_get(NRF_UARTE_Type * p_reg)
{
return p_reg->TXD.AMOUNT;
}
__STATIC_INLINE void nrf_uarte_rx_buffer_set(NRF_UARTE_Type * p_reg,
uint8_t * p_buffer,
uint8_t length)
{
p_reg->RXD.PTR = (uint32_t)p_buffer;
p_reg->RXD.MAXCNT = length;
}
__STATIC_INLINE uint32_t nrf_uarte_rx_amount_get(NRF_UARTE_Type * p_reg)
{
return p_reg->RXD.AMOUNT;
}
#endif //SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif //NRF_UARTE_H__