simmel-bootloader/lib/sdk/components/drivers_nrf/hal/nrf_uart.h
hathach df71d3444d follow #1
seperate files from latest SDK (currently 14.2.0) from good old non-
secure bootloader sdk 11
2018-04-05 00:35:08 +07:00

550 lines
19 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_UART_H__
#define NRF_UART_H__
#include "nrf.h"
#include "nrf_peripherals.h"
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
//Temporary defining legacy UART for instance 1
#define NRF_UART1 (NRF_UART_Type *)NRF_UARTE1
/**
* @defgroup nrf_uart_hal UART HAL
* @{
* @ingroup nrf_uart
*
* @brief Hardware access layer for accessing the UART peripheral.
*/
#define NRF_UART_PSEL_DISCONNECTED 0xFFFFFFFF
/**
* @enum nrf_uart_task_t
* @brief UART tasks.
*/
typedef enum
{
/*lint -save -e30 -esym(628,__INTADDR__)*/
NRF_UART_TASK_STARTRX = offsetof(NRF_UART_Type, TASKS_STARTRX), /**< Task for starting reception. */
NRF_UART_TASK_STOPRX = offsetof(NRF_UART_Type, TASKS_STOPRX), /**< Task for stopping reception. */
NRF_UART_TASK_STARTTX = offsetof(NRF_UART_Type, TASKS_STARTTX), /**< Task for starting transmission. */
NRF_UART_TASK_STOPTX = offsetof(NRF_UART_Type, TASKS_STOPTX), /**< Task for stopping transmission. */
NRF_UART_TASK_SUSPEND = offsetof(NRF_UART_Type, TASKS_SUSPEND), /**< Task for suspending UART. */
/*lint -restore*/
} nrf_uart_task_t;
/**
* @enum nrf_uart_event_t
* @brief UART events.
*/
typedef enum
{
/*lint -save -e30*/
NRF_UART_EVENT_CTS = offsetof(NRF_UART_Type, EVENTS_CTS), /**< Event from CTS line activation. */
NRF_UART_EVENT_NCTS = offsetof(NRF_UART_Type, EVENTS_NCTS), /**< Event from CTS line deactivation. */
NRF_UART_EVENT_RXDRDY = offsetof(NRF_UART_Type, EVENTS_RXDRDY),/**< Event from data ready in RXD. */
NRF_UART_EVENT_TXDRDY = offsetof(NRF_UART_Type, EVENTS_TXDRDY),/**< Event from data sent from TXD. */
NRF_UART_EVENT_ERROR = offsetof(NRF_UART_Type, EVENTS_ERROR), /**< Event from error detection. */
NRF_UART_EVENT_RXTO = offsetof(NRF_UART_Type, EVENTS_RXTO) /**< Event from receiver timeout. */
/*lint -restore*/
} nrf_uart_event_t;
/**
* @enum nrf_uart_int_mask_t
* @brief UART interrupts.
*/
typedef enum
{
/*lint -save -e30*/
NRF_UART_INT_MASK_CTS = UART_INTENCLR_CTS_Msk, /**< CTS line activation interrupt. */
NRF_UART_INT_MASK_NCTS = UART_INTENCLR_NCTS_Msk, /**< CTS line deactivation interrupt. */
NRF_UART_INT_MASK_RXDRDY = UART_INTENCLR_RXDRDY_Msk, /**< Data ready in RXD interrupt. */
NRF_UART_INT_MASK_TXDRDY = UART_INTENCLR_TXDRDY_Msk, /**< Data sent from TXD interrupt. */
NRF_UART_INT_MASK_ERROR = UART_INTENCLR_ERROR_Msk, /**< Error detection interrupt. */
NRF_UART_INT_MASK_RXTO = UART_INTENCLR_RXTO_Msk /**< Receiver timeout interrupt. */
/*lint -restore*/
} nrf_uart_int_mask_t;
/**
* @enum nrf_uart_baudrate_t
* @brief Baudrates supported by UART.
*/
typedef enum
{
#ifdef UARTE_PRESENT
NRF_UART_BAUDRATE_1200 = UARTE_BAUDRATE_BAUDRATE_Baud1200, /**< 1200 baud. */
NRF_UART_BAUDRATE_2400 = UARTE_BAUDRATE_BAUDRATE_Baud2400, /**< 2400 baud. */
NRF_UART_BAUDRATE_4800 = UARTE_BAUDRATE_BAUDRATE_Baud4800, /**< 4800 baud. */
NRF_UART_BAUDRATE_9600 = UARTE_BAUDRATE_BAUDRATE_Baud9600, /**< 9600 baud. */
NRF_UART_BAUDRATE_14400 = UARTE_BAUDRATE_BAUDRATE_Baud14400, /**< 14400 baud. */
NRF_UART_BAUDRATE_19200 = UARTE_BAUDRATE_BAUDRATE_Baud19200, /**< 19200 baud. */
NRF_UART_BAUDRATE_28800 = UARTE_BAUDRATE_BAUDRATE_Baud28800, /**< 28800 baud. */
NRF_UART_BAUDRATE_38400 = UARTE_BAUDRATE_BAUDRATE_Baud38400, /**< 38400 baud. */
NRF_UART_BAUDRATE_57600 = UARTE_BAUDRATE_BAUDRATE_Baud57600, /**< 57600 baud. */
NRF_UART_BAUDRATE_76800 = UARTE_BAUDRATE_BAUDRATE_Baud76800, /**< 76800 baud. */
NRF_UART_BAUDRATE_115200 = UARTE_BAUDRATE_BAUDRATE_Baud115200, /**< 115200 baud. */
NRF_UART_BAUDRATE_230400 = UARTE_BAUDRATE_BAUDRATE_Baud230400, /**< 230400 baud. */
NRF_UART_BAUDRATE_250000 = UARTE_BAUDRATE_BAUDRATE_Baud250000, /**< 250000 baud. */
NRF_UART_BAUDRATE_460800 = UARTE_BAUDRATE_BAUDRATE_Baud460800, /**< 460800 baud. */
NRF_UART_BAUDRATE_921600 = UARTE_BAUDRATE_BAUDRATE_Baud921600, /**< 921600 baud. */
NRF_UART_BAUDRATE_1000000 = UARTE_BAUDRATE_BAUDRATE_Baud1M, /**< 1000000 baud. */
#else
NRF_UART_BAUDRATE_1200 = UART_BAUDRATE_BAUDRATE_Baud1200, /**< 1200 baud. */
NRF_UART_BAUDRATE_2400 = UART_BAUDRATE_BAUDRATE_Baud2400, /**< 2400 baud. */
NRF_UART_BAUDRATE_4800 = UART_BAUDRATE_BAUDRATE_Baud4800, /**< 4800 baud. */
NRF_UART_BAUDRATE_9600 = UART_BAUDRATE_BAUDRATE_Baud9600, /**< 9600 baud. */
NRF_UART_BAUDRATE_14400 = UART_BAUDRATE_BAUDRATE_Baud14400, /**< 14400 baud. */
NRF_UART_BAUDRATE_19200 = UART_BAUDRATE_BAUDRATE_Baud19200, /**< 19200 baud. */
NRF_UART_BAUDRATE_28800 = UART_BAUDRATE_BAUDRATE_Baud28800, /**< 28800 baud. */
NRF_UART_BAUDRATE_38400 = UART_BAUDRATE_BAUDRATE_Baud38400, /**< 38400 baud. */
NRF_UART_BAUDRATE_57600 = UART_BAUDRATE_BAUDRATE_Baud57600, /**< 57600 baud. */
NRF_UART_BAUDRATE_76800 = UART_BAUDRATE_BAUDRATE_Baud76800, /**< 76800 baud. */
NRF_UART_BAUDRATE_115200 = UART_BAUDRATE_BAUDRATE_Baud115200, /**< 115200 baud. */
NRF_UART_BAUDRATE_230400 = UART_BAUDRATE_BAUDRATE_Baud230400, /**< 230400 baud. */
NRF_UART_BAUDRATE_250000 = UART_BAUDRATE_BAUDRATE_Baud250000, /**< 250000 baud. */
NRF_UART_BAUDRATE_460800 = UART_BAUDRATE_BAUDRATE_Baud460800, /**< 460800 baud. */
NRF_UART_BAUDRATE_921600 = UART_BAUDRATE_BAUDRATE_Baud921600, /**< 921600 baud. */
NRF_UART_BAUDRATE_1000000 = UART_BAUDRATE_BAUDRATE_Baud1M, /**< 1000000 baud. */
#endif
} nrf_uart_baudrate_t;
/**
* @enum nrf_uart_error_mask_t
* @brief Types of UART error masks.
*/
typedef enum
{
NRF_UART_ERROR_OVERRUN_MASK = UART_ERRORSRC_OVERRUN_Msk, /**< Overrun error. */
NRF_UART_ERROR_PARITY_MASK = UART_ERRORSRC_PARITY_Msk, /**< Parity error. */
NRF_UART_ERROR_FRAMING_MASK = UART_ERRORSRC_FRAMING_Msk, /**< Framing error. */
NRF_UART_ERROR_BREAK_MASK = UART_ERRORSRC_BREAK_Msk, /**< Break error. */
} nrf_uart_error_mask_t;
/**
* @enum nrf_uart_parity_t
* @brief Types of UART parity modes.
*/
typedef enum
{
NRF_UART_PARITY_EXCLUDED = UART_CONFIG_PARITY_Excluded << UART_CONFIG_PARITY_Pos, /**< Parity excluded. */
NRF_UART_PARITY_INCLUDED = UART_CONFIG_PARITY_Included << UART_CONFIG_PARITY_Pos, /**< Parity included. */
} nrf_uart_parity_t;
/**
* @enum nrf_uart_hwfc_t
* @brief Types of UART flow control modes.
*/
typedef enum
{
NRF_UART_HWFC_DISABLED = UART_CONFIG_HWFC_Disabled, /**< HW flow control disabled. */
NRF_UART_HWFC_ENABLED = UART_CONFIG_HWFC_Enabled, /**< HW flow control enabled. */
} nrf_uart_hwfc_t;
/**
* @brief Function for clearing a specific UART event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_uart_event_clear(NRF_UART_Type * p_reg, nrf_uart_event_t event);
/**
* @brief Function for checking the state of a specific UART event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to check.
*
* @retval True if event is set, False otherwise.
*/
__STATIC_INLINE bool nrf_uart_event_check(NRF_UART_Type * p_reg, nrf_uart_event_t event);
/**
* @brief Function for returning the address of a specific UART event register.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Desired event.
*
* @retval Address of specified event register.
*/
__STATIC_INLINE uint32_t nrf_uart_event_address_get(NRF_UART_Type * p_reg,
nrf_uart_event_t event);
/**
* @brief Function for enabling a specific interrupt.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param int_mask Interrupts to enable.
*/
__STATIC_INLINE void nrf_uart_int_enable(NRF_UART_Type * p_reg, uint32_t int_mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param int_mask Mask of interrupt to check.
*
* @retval true If the interrupt is enabled.
* @retval false If the interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_uart_int_enable_check(NRF_UART_Type * p_reg, uint32_t int_mask);
/**
* @brief Function for disabling specific interrupts.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param int_mask Interrupts to disable.
*/
__STATIC_INLINE void nrf_uart_int_disable(NRF_UART_Type * p_reg, uint32_t int_mask);
/**
* @brief Function for getting error source mask. Function is clearing error source flags after reading.
*
* @param p_reg Pointer to the peripheral registers structure.
* @return Mask with error source flags.
*/
__STATIC_INLINE uint32_t nrf_uart_errorsrc_get_and_clear(NRF_UART_Type * p_reg);
/**
* @brief Function for enabling UART.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uart_enable(NRF_UART_Type * p_reg);
/**
* @brief Function for disabling UART.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uart_disable(NRF_UART_Type * p_reg);
/**
* @brief Function for configuring TX/RX pins.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param pseltxd TXD pin number.
* @param pselrxd RXD pin number.
*/
__STATIC_INLINE void nrf_uart_txrx_pins_set(NRF_UART_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd);
/**
* @brief Function for disconnecting TX/RX pins.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uart_txrx_pins_disconnect(NRF_UART_Type * p_reg);
/**
* @brief Function for getting TX pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uart_tx_pin_get(NRF_UART_Type * p_reg);
/**
* @brief Function for getting RX pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uart_rx_pin_get(NRF_UART_Type * p_reg);
/**
* @brief Function for getting RTS pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uart_rts_pin_get(NRF_UART_Type * p_reg);
/**
* @brief Function for getting CTS pin.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE uint32_t nrf_uart_cts_pin_get(NRF_UART_Type * p_reg);
/**
* @brief Function for configuring flow control pins.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param pselrts RTS pin number.
* @param pselcts CTS pin number.
*/
__STATIC_INLINE void nrf_uart_hwfc_pins_set(NRF_UART_Type * p_reg,
uint32_t pselrts,
uint32_t pselcts);
/**
* @brief Function for disconnecting flow control pins.
*
* @param p_reg Pointer to the peripheral registers structure.
*/
__STATIC_INLINE void nrf_uart_hwfc_pins_disconnect(NRF_UART_Type * p_reg);
/**
* @brief Function for reading RX data.
*
* @param p_reg Pointer to the peripheral registers structure.
* @return Received byte.
*/
__STATIC_INLINE uint8_t nrf_uart_rxd_get(NRF_UART_Type * p_reg);
/**
* @brief Function for setting Tx data.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param txd Byte.
*/
__STATIC_INLINE void nrf_uart_txd_set(NRF_UART_Type * p_reg, uint8_t txd);
/**
* @brief Function for starting an UART task.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param task Task.
*/
__STATIC_INLINE void nrf_uart_task_trigger(NRF_UART_Type * p_reg, nrf_uart_task_t task);
/**
* @brief Function for returning the address of a specific task register.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param task Task.
*
* @return Task address.
*/
__STATIC_INLINE uint32_t nrf_uart_task_address_get(NRF_UART_Type * p_reg, nrf_uart_task_t task);
/**
* @brief Function for configuring UART.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param hwfc Hardware flow control. Enabled if true.
* @param parity Parity. Included if true.
*/
__STATIC_INLINE void nrf_uart_configure(NRF_UART_Type * p_reg,
nrf_uart_parity_t parity,
nrf_uart_hwfc_t hwfc);
/**
* @brief Function for setting UART baudrate.
*
* @param p_reg Pointer to the peripheral registers structure.
* @param baudrate Baudrate.
*/
__STATIC_INLINE void nrf_uart_baudrate_set(NRF_UART_Type * p_reg, nrf_uart_baudrate_t baudrate);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_uart_event_clear(NRF_UART_Type * p_reg, nrf_uart_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
(void)dummy;
#endif
}
__STATIC_INLINE bool nrf_uart_event_check(NRF_UART_Type * p_reg, nrf_uart_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE uint32_t nrf_uart_event_address_get(NRF_UART_Type * p_reg,
nrf_uart_event_t event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE void nrf_uart_int_enable(NRF_UART_Type * p_reg, uint32_t int_mask)
{
p_reg->INTENSET = int_mask;
}
__STATIC_INLINE bool nrf_uart_int_enable_check(NRF_UART_Type * p_reg, uint32_t int_mask)
{
return (bool)(p_reg->INTENSET & int_mask);
}
__STATIC_INLINE void nrf_uart_int_disable(NRF_UART_Type * p_reg, uint32_t int_mask)
{
p_reg->INTENCLR = int_mask;
}
__STATIC_INLINE uint32_t nrf_uart_errorsrc_get_and_clear(NRF_UART_Type * p_reg)
{
uint32_t errsrc_mask = p_reg->ERRORSRC;
p_reg->ERRORSRC = errsrc_mask;
return errsrc_mask;
}
__STATIC_INLINE void nrf_uart_enable(NRF_UART_Type * p_reg)
{
p_reg->ENABLE = UART_ENABLE_ENABLE_Enabled;
}
__STATIC_INLINE void nrf_uart_disable(NRF_UART_Type * p_reg)
{
p_reg->ENABLE = UART_ENABLE_ENABLE_Disabled;
}
__STATIC_INLINE void nrf_uart_txrx_pins_set(NRF_UART_Type * p_reg, uint32_t pseltxd, uint32_t pselrxd)
{
#if defined(UART_PSEL_RXD_CONNECT_Pos)
p_reg->PSEL.RXD = pselrxd;
#else
p_reg->PSELRXD = pselrxd;
#endif
#if defined(UART_PSEL_TXD_CONNECT_Pos)
p_reg->PSEL.TXD = pseltxd;
#else
p_reg->PSELTXD = pseltxd;
#endif
}
__STATIC_INLINE void nrf_uart_txrx_pins_disconnect(NRF_UART_Type * p_reg)
{
nrf_uart_txrx_pins_set(p_reg, NRF_UART_PSEL_DISCONNECTED, NRF_UART_PSEL_DISCONNECTED);
}
__STATIC_INLINE uint32_t nrf_uart_tx_pin_get(NRF_UART_Type * p_reg)
{
#if defined(UART_PSEL_TXD_CONNECT_Pos)
return p_reg->PSEL.TXD;
#else
return p_reg->PSELTXD;
#endif
}
__STATIC_INLINE uint32_t nrf_uart_rx_pin_get(NRF_UART_Type * p_reg)
{
#if defined(UART_PSEL_RXD_CONNECT_Pos)
return p_reg->PSEL.RXD;
#else
return p_reg->PSELRXD;
#endif
}
__STATIC_INLINE uint32_t nrf_uart_rts_pin_get(NRF_UART_Type * p_reg)
{
#if defined(UART_PSEL_RTS_CONNECT_Pos)
return p_reg->PSEL.RTS;
#else
return p_reg->PSELRTS;
#endif
}
__STATIC_INLINE uint32_t nrf_uart_cts_pin_get(NRF_UART_Type * p_reg)
{
#if defined(UART_PSEL_RTS_CONNECT_Pos)
return p_reg->PSEL.CTS;
#else
return p_reg->PSELCTS;
#endif
}
__STATIC_INLINE void nrf_uart_hwfc_pins_set(NRF_UART_Type * p_reg, uint32_t pselrts, uint32_t pselcts)
{
#if defined(UART_PSEL_RTS_CONNECT_Pos)
p_reg->PSEL.RTS = pselrts;
#else
p_reg->PSELRTS = pselrts;
#endif
#if defined(UART_PSEL_RTS_CONNECT_Pos)
p_reg->PSEL.CTS = pselcts;
#else
p_reg->PSELCTS = pselcts;
#endif
}
__STATIC_INLINE void nrf_uart_hwfc_pins_disconnect(NRF_UART_Type * p_reg)
{
nrf_uart_hwfc_pins_set(p_reg, NRF_UART_PSEL_DISCONNECTED, NRF_UART_PSEL_DISCONNECTED);
}
__STATIC_INLINE uint8_t nrf_uart_rxd_get(NRF_UART_Type * p_reg)
{
return p_reg->RXD;
}
__STATIC_INLINE void nrf_uart_txd_set(NRF_UART_Type * p_reg, uint8_t txd)
{
p_reg->TXD = txd;
}
__STATIC_INLINE void nrf_uart_task_trigger(NRF_UART_Type * p_reg, nrf_uart_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
__STATIC_INLINE uint32_t nrf_uart_task_address_get(NRF_UART_Type * p_reg, nrf_uart_task_t task)
{
return (uint32_t)p_reg + (uint32_t)task;
}
__STATIC_INLINE void nrf_uart_configure(NRF_UART_Type * p_reg,
nrf_uart_parity_t parity,
nrf_uart_hwfc_t hwfc)
{
p_reg->CONFIG = (uint32_t)parity | (uint32_t)hwfc;
}
__STATIC_INLINE void nrf_uart_baudrate_set(NRF_UART_Type * p_reg, nrf_uart_baudrate_t baudrate)
{
p_reg->BAUDRATE = baudrate;
}
#endif //SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif //NRF_UART_H__