simmel-bootloader/lib/sdk/components/drivers_nrf/hal/nrf_timer.h
hathach df71d3444d follow #1
seperate files from latest SDK (currently 14.2.0) from good old non-
secure bootloader sdk 11
2018-04-05 00:35:08 +07:00

631 lines
25 KiB
C

/**
* Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @defgroup nrf_timer_hal Timer HAL
* @{
* @ingroup nrf_timer
*
* @brief Hardware access layer for accessing the timer peripheral.
*/
#ifndef NRF_TIMER_H__
#define NRF_TIMER_H__
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include "nrf_peripherals.h"
#include "nrf.h"
#include "nrf_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Macro for validating the correctness of the BIT_WIDTH setting.
*/
#define TIMER_MAX_SIZE(id) CONCAT_3(TIMER, id, _MAX_SIZE)
#define TIMER_BIT_WIDTH_MAX(id, bit_width) \
(TIMER_MAX_SIZE(id) == 8 ? (bit_width == NRF_TIMER_BIT_WIDTH_8) : \
(TIMER_MAX_SIZE(id) == 16 ? (bit_width == NRF_TIMER_BIT_WIDTH_8) || \
(bit_width == NRF_TIMER_BIT_WIDTH_16) : \
(TIMER_MAX_SIZE(id) == 24 ? (bit_width == NRF_TIMER_BIT_WIDTH_8) || \
(bit_width == NRF_TIMER_BIT_WIDTH_16) || \
(bit_width == NRF_TIMER_BIT_WIDTH_24) : \
(TIMER_MAX_SIZE(id) == 32 ? (bit_width == NRF_TIMER_BIT_WIDTH_8) || \
(bit_width == NRF_TIMER_BIT_WIDTH_16) || \
(bit_width == NRF_TIMER_BIT_WIDTH_24) || \
(bit_width == NRF_TIMER_BIT_WIDTH_32) : \
false))))
#if TIMER_COUNT > 3
#define NRF_TIMER_IS_BIT_WIDTH_VALID(p_reg, bit_width) ( \
((p_reg == NRF_TIMER0) && (TIMER_BIT_WIDTH_MAX(0, bit_width))) \
|| ((p_reg == NRF_TIMER1) && (TIMER_BIT_WIDTH_MAX(1, bit_width))) \
|| ((p_reg == NRF_TIMER2) && (TIMER_BIT_WIDTH_MAX(2, bit_width))) \
|| ((p_reg == NRF_TIMER3) && (TIMER_BIT_WIDTH_MAX(3, bit_width))) \
|| ((p_reg == NRF_TIMER4) && (TIMER_BIT_WIDTH_MAX(4, bit_width))) )
#else
#define NRF_TIMER_IS_BIT_WIDTH_VALID(p_reg, bit_width) ( \
((p_reg == NRF_TIMER0) && TIMER_BIT_WIDTH_MAX(0, bit_width)) \
|| ((p_reg == NRF_TIMER1) && TIMER_BIT_WIDTH_MAX(1, bit_width)) \
|| ((p_reg == NRF_TIMER2) && TIMER_BIT_WIDTH_MAX(2, bit_width)) )
#endif
/**
* @brief Macro for getting the number of capture/compare channels available
* in a given timer instance.
*/
#define NRF_TIMER_CC_CHANNEL_COUNT(id) CONCAT_3(TIMER, id, _CC_NUM)
/**
* @brief Timer tasks.
*/
typedef enum
{
/*lint -save -e30 -esym(628,__INTADDR__)*/
NRF_TIMER_TASK_START = offsetof(NRF_TIMER_Type, TASKS_START), ///< Task for starting the timer.
NRF_TIMER_TASK_STOP = offsetof(NRF_TIMER_Type, TASKS_STOP), ///< Task for stopping the timer.
NRF_TIMER_TASK_COUNT = offsetof(NRF_TIMER_Type, TASKS_COUNT), ///< Task for incrementing the timer (in counter mode).
NRF_TIMER_TASK_CLEAR = offsetof(NRF_TIMER_Type, TASKS_CLEAR), ///< Task for resetting the timer value.
NRF_TIMER_TASK_SHUTDOWN = offsetof(NRF_TIMER_Type, TASKS_SHUTDOWN), ///< Task for powering off the timer.
NRF_TIMER_TASK_CAPTURE0 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[0]), ///< Task for capturing the timer value on channel 0.
NRF_TIMER_TASK_CAPTURE1 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[1]), ///< Task for capturing the timer value on channel 1.
NRF_TIMER_TASK_CAPTURE2 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[2]), ///< Task for capturing the timer value on channel 2.
NRF_TIMER_TASK_CAPTURE3 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[3]), ///< Task for capturing the timer value on channel 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_TASK_CAPTURE4 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[4]), ///< Task for capturing the timer value on channel 4.
NRF_TIMER_TASK_CAPTURE5 = offsetof(NRF_TIMER_Type, TASKS_CAPTURE[5]), ///< Task for capturing the timer value on channel 5.
#endif
/*lint -restore*/
} nrf_timer_task_t;
/**
* @brief Timer events.
*/
typedef enum
{
/*lint -save -e30*/
NRF_TIMER_EVENT_COMPARE0 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[0]), ///< Event from compare channel 0.
NRF_TIMER_EVENT_COMPARE1 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[1]), ///< Event from compare channel 1.
NRF_TIMER_EVENT_COMPARE2 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[2]), ///< Event from compare channel 2.
NRF_TIMER_EVENT_COMPARE3 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[3]), ///< Event from compare channel 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_EVENT_COMPARE4 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[4]), ///< Event from compare channel 4.
NRF_TIMER_EVENT_COMPARE5 = offsetof(NRF_TIMER_Type, EVENTS_COMPARE[5]), ///< Event from compare channel 5.
#endif
/*lint -restore*/
} nrf_timer_event_t;
/**
* @brief Types of timer shortcuts.
*/
typedef enum
{
NRF_TIMER_SHORT_COMPARE0_STOP_MASK = TIMER_SHORTS_COMPARE0_STOP_Msk, ///< Shortcut for stopping the timer based on compare 0.
NRF_TIMER_SHORT_COMPARE1_STOP_MASK = TIMER_SHORTS_COMPARE1_STOP_Msk, ///< Shortcut for stopping the timer based on compare 1.
NRF_TIMER_SHORT_COMPARE2_STOP_MASK = TIMER_SHORTS_COMPARE2_STOP_Msk, ///< Shortcut for stopping the timer based on compare 2.
NRF_TIMER_SHORT_COMPARE3_STOP_MASK = TIMER_SHORTS_COMPARE3_STOP_Msk, ///< Shortcut for stopping the timer based on compare 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_SHORT_COMPARE4_STOP_MASK = TIMER_SHORTS_COMPARE4_STOP_Msk, ///< Shortcut for stopping the timer based on compare 4.
NRF_TIMER_SHORT_COMPARE5_STOP_MASK = TIMER_SHORTS_COMPARE5_STOP_Msk, ///< Shortcut for stopping the timer based on compare 5.
#endif
NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK = TIMER_SHORTS_COMPARE0_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 0.
NRF_TIMER_SHORT_COMPARE1_CLEAR_MASK = TIMER_SHORTS_COMPARE1_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 1.
NRF_TIMER_SHORT_COMPARE2_CLEAR_MASK = TIMER_SHORTS_COMPARE2_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 2.
NRF_TIMER_SHORT_COMPARE3_CLEAR_MASK = TIMER_SHORTS_COMPARE3_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_SHORT_COMPARE4_CLEAR_MASK = TIMER_SHORTS_COMPARE4_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 4.
NRF_TIMER_SHORT_COMPARE5_CLEAR_MASK = TIMER_SHORTS_COMPARE5_CLEAR_Msk, ///< Shortcut for clearing the timer based on compare 5.
#endif
} nrf_timer_short_mask_t;
/**
* @brief Timer modes.
*/
typedef enum
{
NRF_TIMER_MODE_TIMER = TIMER_MODE_MODE_Timer, ///< Timer mode: timer.
NRF_TIMER_MODE_COUNTER = TIMER_MODE_MODE_Counter, ///< Timer mode: counter.
#if defined(TIMER_MODE_MODE_LowPowerCounter) || defined(__SDK_DOXYGEN__)
NRF_TIMER_MODE_LOW_POWER_COUNTER = TIMER_MODE_MODE_LowPowerCounter, ///< Timer mode: low-power counter.
#endif
} nrf_timer_mode_t;
/**
* @brief Timer bit width.
*/
typedef enum
{
NRF_TIMER_BIT_WIDTH_8 = TIMER_BITMODE_BITMODE_08Bit, ///< Timer bit width 8 bit.
NRF_TIMER_BIT_WIDTH_16 = TIMER_BITMODE_BITMODE_16Bit, ///< Timer bit width 16 bit.
NRF_TIMER_BIT_WIDTH_24 = TIMER_BITMODE_BITMODE_24Bit, ///< Timer bit width 24 bit.
NRF_TIMER_BIT_WIDTH_32 = TIMER_BITMODE_BITMODE_32Bit ///< Timer bit width 32 bit.
} nrf_timer_bit_width_t;
/**
* @brief Timer prescalers.
*/
typedef enum
{
NRF_TIMER_FREQ_16MHz = 0, ///< Timer frequency 16 MHz.
NRF_TIMER_FREQ_8MHz, ///< Timer frequency 8 MHz.
NRF_TIMER_FREQ_4MHz, ///< Timer frequency 4 MHz.
NRF_TIMER_FREQ_2MHz, ///< Timer frequency 2 MHz.
NRF_TIMER_FREQ_1MHz, ///< Timer frequency 1 MHz.
NRF_TIMER_FREQ_500kHz, ///< Timer frequency 500 kHz.
NRF_TIMER_FREQ_250kHz, ///< Timer frequency 250 kHz.
NRF_TIMER_FREQ_125kHz, ///< Timer frequency 125 kHz.
NRF_TIMER_FREQ_62500Hz, ///< Timer frequency 62500 Hz.
NRF_TIMER_FREQ_31250Hz ///< Timer frequency 31250 Hz.
} nrf_timer_frequency_t;
/**
* @brief Timer capture/compare channels.
*/
typedef enum
{
NRF_TIMER_CC_CHANNEL0 = 0, ///< Timer capture/compare channel 0.
NRF_TIMER_CC_CHANNEL1, ///< Timer capture/compare channel 1.
NRF_TIMER_CC_CHANNEL2, ///< Timer capture/compare channel 2.
NRF_TIMER_CC_CHANNEL3, ///< Timer capture/compare channel 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_CC_CHANNEL4, ///< Timer capture/compare channel 4.
NRF_TIMER_CC_CHANNEL5, ///< Timer capture/compare channel 5.
#endif
} nrf_timer_cc_channel_t;
/**
* @brief Timer interrupts.
*/
typedef enum
{
NRF_TIMER_INT_COMPARE0_MASK = TIMER_INTENSET_COMPARE0_Msk, ///< Timer interrupt from compare event on channel 0.
NRF_TIMER_INT_COMPARE1_MASK = TIMER_INTENSET_COMPARE1_Msk, ///< Timer interrupt from compare event on channel 1.
NRF_TIMER_INT_COMPARE2_MASK = TIMER_INTENSET_COMPARE2_Msk, ///< Timer interrupt from compare event on channel 2.
NRF_TIMER_INT_COMPARE3_MASK = TIMER_INTENSET_COMPARE3_Msk, ///< Timer interrupt from compare event on channel 3.
#if (TIMER_COUNT > 3) || defined(__SDK_DOXYGEN__)
NRF_TIMER_INT_COMPARE4_MASK = TIMER_INTENSET_COMPARE4_Msk, ///< Timer interrupt from compare event on channel 4.
NRF_TIMER_INT_COMPARE5_MASK = TIMER_INTENSET_COMPARE5_Msk, ///< Timer interrupt from compare event on channel 5.
#endif
} nrf_timer_int_mask_t;
/**
* @brief Function for activating a specific timer task.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] task Task to activate.
*/
__STATIC_INLINE void nrf_timer_task_trigger(NRF_TIMER_Type * p_reg,
nrf_timer_task_t task);
/**
* @brief Function for getting the address of a specific timer task register.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] task Requested task.
*
* @return Address of the specified task register.
*/
__STATIC_INLINE uint32_t * nrf_timer_task_address_get(NRF_TIMER_Type * p_reg,
nrf_timer_task_t task);
/**
* @brief Function for clearing a specific timer event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_timer_event_clear(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event);
/**
* @brief Function for checking the state of a specific timer event.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Event to check.
*
* @retval true If the event is set.
* @retval false If the event is not set.
*/
__STATIC_INLINE bool nrf_timer_event_check(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event);
/**
* @brief Function for getting the address of a specific timer event register.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] event Requested event.
*
* @return Address of the specified event register.
*/
__STATIC_INLINE uint32_t * nrf_timer_event_address_get(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event);
/**
* @brief Function for enabling specified shortcuts.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] timer_shorts_mask Shortcuts to enable.
*/
__STATIC_INLINE void nrf_timer_shorts_enable(NRF_TIMER_Type * p_reg,
uint32_t timer_shorts_mask);
/**
* @brief Function for disabling specified shortcuts.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] timer_shorts_mask Shortcuts to disable.
*/
__STATIC_INLINE void nrf_timer_shorts_disable(NRF_TIMER_Type * p_reg,
uint32_t timer_shorts_mask);
/**
* @brief Function for enabling specified interrupts.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] timer_int_mask Interrupts to enable.
*/
__STATIC_INLINE void nrf_timer_int_enable(NRF_TIMER_Type * p_reg,
uint32_t timer_int_mask);
/**
* @brief Function for disabling specified interrupts.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] timer_int_mask Interrupts to disable.
*/
__STATIC_INLINE void nrf_timer_int_disable(NRF_TIMER_Type * p_reg,
uint32_t timer_int_mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] timer_int Interrupt to check.
*
* @retval true If the interrupt is enabled.
* @retval false If the interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_timer_int_enable_check(NRF_TIMER_Type * p_reg,
uint32_t timer_int);
/**
* @brief Function for setting the timer mode.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] mode Timer mode.
*/
__STATIC_INLINE void nrf_timer_mode_set(NRF_TIMER_Type * p_reg,
nrf_timer_mode_t mode);
/**
* @brief Function for retrieving the timer mode.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
*
* @return Timer mode.
*/
__STATIC_INLINE nrf_timer_mode_t nrf_timer_mode_get(NRF_TIMER_Type * p_reg);
/**
* @brief Function for setting the timer bit width.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] bit_width Timer bit width.
*/
__STATIC_INLINE void nrf_timer_bit_width_set(NRF_TIMER_Type * p_reg,
nrf_timer_bit_width_t bit_width);
/**
* @brief Function for retrieving the timer bit width.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
*
* @return Timer bit width.
*/
__STATIC_INLINE nrf_timer_bit_width_t nrf_timer_bit_width_get(NRF_TIMER_Type * p_reg);
/**
* @brief Function for setting the timer frequency.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] frequency Timer frequency.
*/
__STATIC_INLINE void nrf_timer_frequency_set(NRF_TIMER_Type * p_reg,
nrf_timer_frequency_t frequency);
/**
* @brief Function for retrieving the timer frequency.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
*
* @return Timer frequency.
*/
__STATIC_INLINE nrf_timer_frequency_t nrf_timer_frequency_get(NRF_TIMER_Type * p_reg);
/**
* @brief Function for writing the capture/compare register for a specified channel.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] cc_channel Requested capture/compare channel.
* @param[in] cc_value Value to write to the capture/compare register.
*/
__STATIC_INLINE void nrf_timer_cc_write(NRF_TIMER_Type * p_reg,
nrf_timer_cc_channel_t cc_channel,
uint32_t cc_value);
/**
* @brief Function for retrieving the capture/compare value for a specified channel.
*
* @param[in] p_reg Pointer to the peripheral registers structure.
* @param[in] cc_channel Requested capture/compare channel.
*
* @return Value from the requested capture/compare register.
*/
__STATIC_INLINE uint32_t nrf_timer_cc_read(NRF_TIMER_Type * p_reg,
nrf_timer_cc_channel_t cc_channel);
/**
* @brief Function for getting a specific timer capture task.
*
* @param[in] channel Capture channel.
*
* @return Capture task.
*/
__STATIC_INLINE nrf_timer_task_t nrf_timer_capture_task_get(uint32_t channel);
/**
* @brief Function for getting a specific timer compare event.
*
* @param[in] channel Compare channel.
*
* @return Compare event.
*/
__STATIC_INLINE nrf_timer_event_t nrf_timer_compare_event_get(uint32_t channel);
/**
* @brief Function for getting a specific timer compare interrupt.
*
* @param[in] channel Compare channel.
*
* @return Compare interrupt.
*/
__STATIC_INLINE nrf_timer_int_mask_t nrf_timer_compare_int_get(uint32_t channel);
/**
* @brief Function for calculating the number of timer ticks for a given time
* (in microseconds) and timer frequency.
*
* @param[in] time_us Time in microseconds.
* @param[in] frequency Timer frequency.
*
* @return Number of timer ticks.
*/
__STATIC_INLINE uint32_t nrf_timer_us_to_ticks(uint32_t time_us,
nrf_timer_frequency_t frequency);
/**
* @brief Function for calculating the number of timer ticks for a given time
* (in milliseconds) and timer frequency.
*
* @param[in] time_ms Time in milliseconds.
* @param[in] frequency Timer frequency.
*
* @return Number of timer ticks.
*/
__STATIC_INLINE uint32_t nrf_timer_ms_to_ticks(uint32_t time_ms,
nrf_timer_frequency_t frequency);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_timer_task_trigger(NRF_TIMER_Type * p_reg,
nrf_timer_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
__STATIC_INLINE uint32_t * nrf_timer_task_address_get(NRF_TIMER_Type * p_reg,
nrf_timer_task_t task)
{
return (uint32_t *)((uint8_t *)p_reg + (uint32_t)task);
}
__STATIC_INLINE void nrf_timer_event_clear(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
(void)dummy;
#endif
}
__STATIC_INLINE bool nrf_timer_event_check(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE uint32_t * nrf_timer_event_address_get(NRF_TIMER_Type * p_reg,
nrf_timer_event_t event)
{
return (uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
__STATIC_INLINE void nrf_timer_shorts_enable(NRF_TIMER_Type * p_reg,
uint32_t timer_shorts_mask)
{
p_reg->SHORTS |= timer_shorts_mask;
}
__STATIC_INLINE void nrf_timer_shorts_disable(NRF_TIMER_Type * p_reg,
uint32_t timer_shorts_mask)
{
p_reg->SHORTS &= ~(timer_shorts_mask);
}
__STATIC_INLINE void nrf_timer_int_enable(NRF_TIMER_Type * p_reg,
uint32_t timer_int_mask)
{
p_reg->INTENSET = timer_int_mask;
}
__STATIC_INLINE void nrf_timer_int_disable(NRF_TIMER_Type * p_reg,
uint32_t timer_int_mask)
{
p_reg->INTENCLR = timer_int_mask;
}
__STATIC_INLINE bool nrf_timer_int_enable_check(NRF_TIMER_Type * p_reg,
uint32_t timer_int)
{
return (bool)(p_reg->INTENSET & timer_int);
}
__STATIC_INLINE void nrf_timer_mode_set(NRF_TIMER_Type * p_reg,
nrf_timer_mode_t mode)
{
p_reg->MODE = (p_reg->MODE & ~TIMER_MODE_MODE_Msk) |
((mode << TIMER_MODE_MODE_Pos) & TIMER_MODE_MODE_Msk);
}
__STATIC_INLINE nrf_timer_mode_t nrf_timer_mode_get(NRF_TIMER_Type * p_reg)
{
return (nrf_timer_mode_t)(p_reg->MODE);
}
__STATIC_INLINE void nrf_timer_bit_width_set(NRF_TIMER_Type * p_reg,
nrf_timer_bit_width_t bit_width)
{
p_reg->BITMODE = (p_reg->BITMODE & ~TIMER_BITMODE_BITMODE_Msk) |
((bit_width << TIMER_BITMODE_BITMODE_Pos) &
TIMER_BITMODE_BITMODE_Msk);
}
__STATIC_INLINE nrf_timer_bit_width_t nrf_timer_bit_width_get(NRF_TIMER_Type * p_reg)
{
return (nrf_timer_bit_width_t)(p_reg->BITMODE);
}
__STATIC_INLINE void nrf_timer_frequency_set(NRF_TIMER_Type * p_reg,
nrf_timer_frequency_t frequency)
{
p_reg->PRESCALER = (p_reg->PRESCALER & ~TIMER_PRESCALER_PRESCALER_Msk) |
((frequency << TIMER_PRESCALER_PRESCALER_Pos) &
TIMER_PRESCALER_PRESCALER_Msk);
}
__STATIC_INLINE nrf_timer_frequency_t nrf_timer_frequency_get(NRF_TIMER_Type * p_reg)
{
return (nrf_timer_frequency_t)(p_reg->PRESCALER);
}
__STATIC_INLINE void nrf_timer_cc_write(NRF_TIMER_Type * p_reg,
nrf_timer_cc_channel_t cc_channel,
uint32_t cc_value)
{
p_reg->CC[cc_channel] = cc_value;
}
__STATIC_INLINE uint32_t nrf_timer_cc_read(NRF_TIMER_Type * p_reg,
nrf_timer_cc_channel_t cc_channel)
{
return (uint32_t)p_reg->CC[cc_channel];
}
__STATIC_INLINE nrf_timer_task_t nrf_timer_capture_task_get(uint32_t channel)
{
return (nrf_timer_task_t)
((uint32_t)NRF_TIMER_TASK_CAPTURE0 + (channel * sizeof(uint32_t)));
}
__STATIC_INLINE nrf_timer_event_t nrf_timer_compare_event_get(uint32_t channel)
{
return (nrf_timer_event_t)
((uint32_t)NRF_TIMER_EVENT_COMPARE0 + (channel * sizeof(uint32_t)));
}
__STATIC_INLINE nrf_timer_int_mask_t nrf_timer_compare_int_get(uint32_t channel)
{
return (nrf_timer_int_mask_t)
((uint32_t)NRF_TIMER_INT_COMPARE0_MASK << channel);
}
__STATIC_INLINE uint32_t nrf_timer_us_to_ticks(uint32_t time_us,
nrf_timer_frequency_t frequency)
{
// The "frequency" parameter here is actually the prescaler value, and the
// timer runs at the following frequency: f = 16 MHz / 2^prescaler.
uint32_t prescaler = (uint32_t)frequency;
ASSERT(time_us <= (UINT32_MAX / 16UL));
return ((time_us * 16UL) >> prescaler);
}
__STATIC_INLINE uint32_t nrf_timer_ms_to_ticks(uint32_t time_ms,
nrf_timer_frequency_t frequency)
{
// The "frequency" parameter here is actually the prescaler value, and the
// timer runs at the following frequency: f = 16000 kHz / 2^prescaler.
uint32_t prescaler = (uint32_t)frequency;
ASSERT(time_ms <= (UINT32_MAX / 16000UL));
return ((time_ms * 16000UL) >> prescaler);
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
#ifdef __cplusplus
}
#endif
#endif // NRF_TIMER_H__
/** @} */