simmel-bootloader/lib/sdk/components/drivers_nrf/uart/nrf_drv_uart.c

1004 lines
33 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(UART)
#include "nrf_drv_uart.h"
#include "nrf_assert.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME uart
#if UART_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL UART_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR UART_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR UART_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) (event == NRF_UART_EVENT_ERROR ? "NRF_UART_EVENT_ERROR" : "UNKNOWN EVENT")
#else //UART_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event) ""
#define NRF_LOG_LEVEL 0
#endif //UART_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
// UARTE and UART combined
#define CODE_FOR_UARTE(code) if (m_cb[p_instance->drv_inst_idx].use_easy_dma) { code }
#define CODE_FOR_UARTE_INT(idx, code) if (m_cb[idx].use_easy_dma) { code }
#define CODE_FOR_UART(code) else { code }
#elif (defined(UARTE_IN_USE) && !defined(UART_IN_USE))
// UARTE only
#define CODE_FOR_UARTE(code) { code }
#define CODE_FOR_UARTE_INT(idx, code) { code }
#define CODE_FOR_UART(code)
#elif (!defined(UARTE_IN_USE) && defined(UART_IN_USE))
// UART only
#define CODE_FOR_UARTE(code)
#define CODE_FOR_UARTE_INT(idx, code)
#define CODE_FOR_UART(code) { code }
#else
#error "Wrong configuration."
#endif
#define TX_COUNTER_ABORT_REQ_VALUE 256
typedef struct
{
void * p_context;
nrf_uart_event_handler_t handler;
uint8_t const * p_tx_buffer;
uint8_t * p_rx_buffer;
uint8_t * p_rx_secondary_buffer;
volatile uint16_t tx_counter;
uint8_t tx_buffer_length;
uint8_t rx_buffer_length;
uint8_t rx_secondary_buffer_length;
volatile uint8_t rx_counter;
bool rx_enabled;
nrf_drv_state_t state;
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
bool use_easy_dma;
#endif
} uart_control_block_t;
static uart_control_block_t m_cb[UART_ENABLED_COUNT];
#ifdef NRF52810_XXAA
#define IRQ_HANDLER(n) void UARTE##n##_IRQHandler(void)
#else
#define IRQ_HANDLER(n) void UART##n##_IRQHandler(void)
#endif
__STATIC_INLINE void apply_config(nrf_drv_uart_t const * p_instance, nrf_drv_uart_config_t const * p_config)
{
if (p_config->pseltxd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_pin_set(p_config->pseltxd);
nrf_gpio_cfg_output(p_config->pseltxd);
}
if (p_config->pselrxd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_input(p_config->pselrxd, NRF_GPIO_PIN_NOPULL);
}
nrf_uarte_config_t uarte_cfg =
{
.hwfc = (nrf_uarte_hwfc_t) p_config->hwfc,
.parity = (nrf_uarte_parity_t) p_config->parity
};
nrf_uart_config_t uart_cfg =
{
.hwfc = (nrf_uart_hwfc_t) p_config->hwfc,
.parity = (nrf_uart_parity_t) p_config->parity
};
CODE_FOR_UARTE
(
nrf_uarte_baudrate_set(p_instance->reg.p_uarte, (nrf_uarte_baudrate_t)p_config->baudrate);
// nrf_uarte_configure(p_instance->reg.p_uarte, (nrf_uarte_parity_t)p_config->parity, (nrf_uarte_hwfc_t)p_config->hwfc);
nrf_uarte_configure(p_instance->reg.p_uarte, &uarte_cfg);
nrf_uarte_txrx_pins_set(p_instance->reg.p_uarte, p_config->pseltxd, p_config->pselrxd);
if (p_config->hwfc == NRF_UART_HWFC_ENABLED)
{
if (p_config->pselcts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_input(p_config->pselcts, NRF_GPIO_PIN_NOPULL);
}
if (p_config->pselrts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_pin_set(p_config->pselrts);
nrf_gpio_cfg_output(p_config->pselrts);
}
nrf_uarte_hwfc_pins_set(p_instance->reg.p_uarte, p_config->pselrts, p_config->pselcts);
}
)
CODE_FOR_UART
(
nrf_uart_baudrate_set(p_instance->reg.p_uart, p_config->baudrate);
// nrf_uart_configure(p_instance->reg.p_uart, p_config->parity, p_config->hwfc);
nrf_uart_configure(p_instance->reg.p_uart, &uart_cfg);
nrf_uart_txrx_pins_set(p_instance->reg.p_uart, p_config->pseltxd, p_config->pselrxd);
if (p_config->hwfc == NRF_UART_HWFC_ENABLED)
{
if (p_config->pselcts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_input(p_config->pselcts, NRF_GPIO_PIN_NOPULL);
}
if (p_config->pselrts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_pin_set(p_config->pselrts);
nrf_gpio_cfg_output(p_config->pselrts);
}
nrf_uart_hwfc_pins_set(p_instance->reg.p_uart, p_config->pselrts, p_config->pselcts);
}
)
}
__STATIC_INLINE void interrupts_enable(const nrf_drv_uart_t * p_instance, uint8_t interrupt_priority)
{
CODE_FOR_UARTE
(
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ENDRX_MASK |
NRF_UARTE_INT_ENDTX_MASK |
NRF_UARTE_INT_ERROR_MASK |
NRF_UARTE_INT_RXTO_MASK);
nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uarte), interrupt_priority);
)
CODE_FOR_UART
(
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY);
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_TXDRDY |
NRF_UART_INT_MASK_RXTO);
nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uart), interrupt_priority);
)
}
__STATIC_INLINE void interrupts_disable(const nrf_drv_uart_t * p_instance)
{
CODE_FOR_UARTE
(
nrf_uarte_int_disable(p_instance->reg.p_uarte, NRF_UARTE_INT_ENDRX_MASK |
NRF_UARTE_INT_ENDTX_MASK |
NRF_UARTE_INT_ERROR_MASK |
NRF_UARTE_INT_RXTO_MASK);
nrf_drv_common_irq_disable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uarte));
)
CODE_FOR_UART
(
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY |
NRF_UART_INT_MASK_TXDRDY |
NRF_UART_INT_MASK_ERROR |
NRF_UART_INT_MASK_RXTO);
nrf_drv_common_irq_disable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uart));
)
}
__STATIC_INLINE void pins_to_default(const nrf_drv_uart_t * p_instance)
{
/* Reset pins to default states */
uint32_t txd;
uint32_t rxd;
uint32_t rts;
uint32_t cts;
CODE_FOR_UARTE
(
txd = nrf_uarte_tx_pin_get(p_instance->reg.p_uarte);
rxd = nrf_uarte_rx_pin_get(p_instance->reg.p_uarte);
rts = nrf_uarte_rts_pin_get(p_instance->reg.p_uarte);
cts = nrf_uarte_cts_pin_get(p_instance->reg.p_uarte);
nrf_uarte_txrx_pins_disconnect(p_instance->reg.p_uarte);
nrf_uarte_hwfc_pins_disconnect(p_instance->reg.p_uarte);
)
CODE_FOR_UART
(
txd = nrf_uart_tx_pin_get(p_instance->reg.p_uart);
rxd = nrf_uart_rx_pin_get(p_instance->reg.p_uart);
rts = nrf_uart_rts_pin_get(p_instance->reg.p_uart);
cts = nrf_uart_cts_pin_get(p_instance->reg.p_uart);
nrf_uart_txrx_pins_disconnect(p_instance->reg.p_uart);
nrf_uart_hwfc_pins_disconnect(p_instance->reg.p_uart);
)
if (txd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_default(txd);
}
if (rxd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_default(rxd);
}
if (cts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_default(cts);
}
if (rts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_default(rts);
}
}
__STATIC_INLINE void uart_enable(const nrf_drv_uart_t * p_instance)
{
CODE_FOR_UARTE(nrf_uarte_enable(p_instance->reg.p_uarte);)
CODE_FOR_UART(nrf_uart_enable(p_instance->reg.p_uart););
}
__STATIC_INLINE void uart_disable(const nrf_drv_uart_t * p_instance)
{
CODE_FOR_UARTE(nrf_uarte_disable(p_instance->reg.p_uarte);)
CODE_FOR_UART(nrf_uart_disable(p_instance->reg.p_uart););
}
ret_code_t nrf_drv_uart_init(const nrf_drv_uart_t * p_instance, nrf_drv_uart_config_t const * p_config,
nrf_uart_event_handler_t event_handler)
{
ASSERT(p_config);
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ret_code_t err_code = NRF_SUCCESS;
if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_ERROR("Init failed. id:%d in wrong state", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
return err_code;
}
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
p_cb->use_easy_dma = p_config->use_easy_dma;
#endif
apply_config(p_instance, p_config);
p_cb->handler = event_handler;
p_cb->p_context = p_config->p_context;
if (p_cb->handler)
{
interrupts_enable(p_instance, p_config->interrupt_priority);
}
uart_enable(p_instance);
p_cb->rx_buffer_length = 0;
p_cb->rx_secondary_buffer_length = 0;
p_cb->tx_buffer_length = 0;
p_cb->state = NRF_DRV_STATE_INITIALIZED;
p_cb->rx_enabled = false;
return err_code;
}
void nrf_drv_uart_uninit(const nrf_drv_uart_t * p_instance)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
uart_disable(p_instance);
if (p_cb->handler)
{
interrupts_disable(p_instance);
}
pins_to_default(p_instance);
p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
p_cb->handler = NULL;
NRF_LOG_INFO("Uninit id: %d.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
}
#if defined(UART_IN_USE)
__STATIC_INLINE void tx_byte(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
{
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_TXDRDY);
uint8_t txd = p_cb->p_tx_buffer[p_cb->tx_counter];
p_cb->tx_counter++;
nrf_uart_txd_set(p_uart, txd);
}
__STATIC_INLINE ret_code_t nrf_drv_uart_tx_for_uart(const nrf_drv_uart_t * p_instance)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ret_code_t err_code = NRF_SUCCESS;
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY);
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTTX);
tx_byte(p_instance->reg.p_uart, p_cb);
if (p_cb->handler == NULL)
{
while (p_cb->tx_counter < (uint16_t) p_cb->tx_buffer_length)
{
while (!nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY) &&
p_cb->tx_counter != TX_COUNTER_ABORT_REQ_VALUE)
{
}
if (p_cb->tx_counter != TX_COUNTER_ABORT_REQ_VALUE)
{
tx_byte(p_instance->reg.p_uart, p_cb);
}
}
if (p_cb->tx_counter == TX_COUNTER_ABORT_REQ_VALUE)
{
err_code = NRF_ERROR_FORBIDDEN;
}
else
{
while (!nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY))
{
}
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPTX);
}
p_cb->tx_buffer_length = 0;
}
return err_code;
}
#endif
#if defined(UARTE_IN_USE)
__STATIC_INLINE ret_code_t nrf_drv_uart_tx_for_uarte(const nrf_drv_uart_t * p_instance)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ret_code_t err_code = NRF_SUCCESS;
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
nrf_uarte_tx_buffer_set(p_instance->reg.p_uarte, p_cb->p_tx_buffer, p_cb->tx_buffer_length);
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STARTTX);
if (p_cb->handler == NULL)
{
bool endtx;
bool txstopped;
do
{
endtx = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
txstopped = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
}
while ((!endtx) && (!txstopped));
if (txstopped)
{
err_code = NRF_ERROR_FORBIDDEN;
}
p_cb->tx_buffer_length = 0;
}
return err_code;
}
#endif
ret_code_t nrf_drv_uart_tx(const nrf_drv_uart_t * p_instance, uint8_t const * const p_data, uint8_t length)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ASSERT(p_cb->state == NRF_DRV_STATE_INITIALIZED);
ASSERT(length>0);
ASSERT(p_data);
ret_code_t err_code;
CODE_FOR_UARTE
(
// EasyDMA requires that transfer buffers are placed in DataRAM,
// signal error if the are not.
if (!nrf_drv_is_in_RAM(p_data))
{
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_ERROR("Id:%d, Easy-DMA buffer not in RAM: %08x",
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), p_data);
return err_code;
}
)
if (nrf_drv_uart_tx_in_progress(p_instance))
{
err_code = NRF_ERROR_BUSY;
NRF_LOG_WARNING("Id:%d busy",nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
return err_code;
}
p_cb->tx_buffer_length = length;
p_cb->p_tx_buffer = p_data;
p_cb->tx_counter = 0;
NRF_LOG_INFO("TX req id:%d length: %d.",
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg),
p_cb->tx_buffer_length);
NRF_LOG_DEBUG("Tx data:");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->p_tx_buffer,
p_cb->tx_buffer_length * sizeof(p_cb->p_tx_buffer[0]));
CODE_FOR_UARTE
(
return nrf_drv_uart_tx_for_uarte(p_instance);
)
CODE_FOR_UART
(
return nrf_drv_uart_tx_for_uart(p_instance);
)
}
bool nrf_drv_uart_tx_in_progress(const nrf_drv_uart_t * p_instance)
{
return (m_cb[p_instance->drv_inst_idx].tx_buffer_length != 0);
}
#if defined(UART_IN_USE)
__STATIC_INLINE void rx_enable(const nrf_drv_uart_t * p_instance)
{
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTRX);
}
__STATIC_INLINE void rx_byte(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
{
if (!p_cb->rx_buffer_length)
{
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXDRDY);
// Byte received when buffer is not set - data lost.
(void) nrf_uart_rxd_get(p_uart);
return;
}
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXDRDY);
p_cb->p_rx_buffer[p_cb->rx_counter] = nrf_uart_rxd_get(p_uart);
p_cb->rx_counter++;
}
__STATIC_INLINE ret_code_t nrf_drv_uart_rx_for_uart(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length, bool second_buffer)
{
ret_code_t err_code;
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
if ((!p_cb->rx_enabled) && (!second_buffer))
{
rx_enable(p_instance);
}
if (p_cb->handler == NULL)
{
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
bool rxrdy;
bool rxto;
bool error;
do
{
do
{
error = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
rxrdy = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
rxto = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
} while ((!rxrdy) && (!rxto) && (!error));
if (error || rxto)
{
break;
}
rx_byte(p_instance->reg.p_uart, p_cb);
} while (p_cb->rx_buffer_length > p_cb->rx_counter);
p_cb->rx_buffer_length = 0;
if (error)
{
err_code = NRF_ERROR_INTERNAL;
NRF_LOG_WARNING("RX Id: %d, transfer error.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
return err_code;
}
if (rxto)
{
NRF_LOG_WARNING("RX Id: %d, aborted.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
err_code = NRF_ERROR_FORBIDDEN;
return err_code;
}
if (p_cb->rx_enabled)
{
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTRX);
}
else
{
// Skip stopping RX if driver is forced to be enabled.
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
}
}
else
{
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
}
err_code = NRF_SUCCESS;
return err_code;
}
#endif
#if defined(UARTE_IN_USE)
__STATIC_INLINE ret_code_t nrf_drv_uart_rx_for_uarte(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length, bool second_buffer)
{
ret_code_t err_code = NRF_SUCCESS;
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
nrf_uarte_rx_buffer_set(p_instance->reg.p_uarte, p_data, length);
if (!second_buffer)
{
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STARTRX);
}
else
{
nrf_uarte_shorts_enable(p_instance->reg.p_uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
}
if (m_cb[p_instance->drv_inst_idx].handler == NULL)
{
bool endrx;
bool rxto;
bool error;
do {
endrx = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
rxto = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
error = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
}while ((!endrx) && (!rxto) && (!error));
m_cb[p_instance->drv_inst_idx].rx_buffer_length = 0;
if (error)
{
err_code = NRF_ERROR_INTERNAL;
}
if (rxto)
{
err_code = NRF_ERROR_FORBIDDEN;
}
}
else
{
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
}
return err_code;
}
#endif
ret_code_t nrf_drv_uart_rx(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
ASSERT(m_cb[p_instance->drv_inst_idx].state == NRF_DRV_STATE_INITIALIZED);
ASSERT(length>0);
ret_code_t err_code;
CODE_FOR_UARTE
(
// EasyDMA requires that transfer buffers are placed in DataRAM,
// signal error if the are not.
if (!nrf_drv_is_in_RAM(p_data))
{
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_ERROR("Id:%d, Easy-DMA buffer not in RAM: %08x",
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), p_data);
return err_code;
}
)
bool second_buffer = false;
if (p_cb->handler)
{
CODE_FOR_UARTE
(
nrf_uarte_int_disable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
)
CODE_FOR_UART
(
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
)
}
if (p_cb->rx_buffer_length != 0)
{
if (p_cb->rx_secondary_buffer_length != 0)
{
if (p_cb->handler)
{
CODE_FOR_UARTE
(
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
)
CODE_FOR_UART
(
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
)
}
err_code = NRF_ERROR_BUSY;
NRF_LOG_WARNING("RX Id:%d, busy", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
return err_code;
}
second_buffer = true;
}
if (!second_buffer)
{
p_cb->rx_buffer_length = length;
p_cb->p_rx_buffer = p_data;
p_cb->rx_counter = 0;
p_cb->rx_secondary_buffer_length = 0;
}
else
{
p_cb->p_rx_secondary_buffer = p_data;
p_cb->rx_secondary_buffer_length = length;
}
NRF_LOG_INFO("RX Id:%d len:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), length);
CODE_FOR_UARTE
(
return nrf_drv_uart_rx_for_uarte(p_instance, p_data, length, second_buffer);
)
CODE_FOR_UART
(
return nrf_drv_uart_rx_for_uart(p_instance, p_data, length, second_buffer);
)
}
bool nrf_drv_uart_rx_ready(nrf_drv_uart_t const * p_instance)
{
CODE_FOR_UARTE
(
return nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
)
CODE_FOR_UART
(
return nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
)
}
void nrf_drv_uart_rx_enable(const nrf_drv_uart_t * p_instance)
{
//Easy dma mode does not support enabling receiver without setting up buffer.
CODE_FOR_UARTE
(
ASSERT(false);
)
CODE_FOR_UART
(
if (!m_cb[p_instance->drv_inst_idx].rx_enabled)
{
rx_enable(p_instance);
m_cb[p_instance->drv_inst_idx].rx_enabled = true;
}
)
}
void nrf_drv_uart_rx_disable(const nrf_drv_uart_t * p_instance)
{
//Easy dma mode does not support enabling receiver without setting up buffer.
CODE_FOR_UARTE
(
ASSERT(false);
)
CODE_FOR_UART
(
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
m_cb[p_instance->drv_inst_idx].rx_enabled = false;
)
}
uint32_t nrf_drv_uart_errorsrc_get(const nrf_drv_uart_t * p_instance)
{
uint32_t errsrc;
CODE_FOR_UARTE
(
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
errsrc = nrf_uarte_errorsrc_get_and_clear(p_instance->reg.p_uarte);
)
CODE_FOR_UART
(
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
errsrc = nrf_uart_errorsrc_get_and_clear(p_instance->reg.p_uart);
)
return errsrc;
}
__STATIC_INLINE void rx_done_event(uart_control_block_t * p_cb, uint8_t bytes, uint8_t * p_data)
{
nrf_drv_uart_event_t event;
event.type = NRF_DRV_UART_EVT_RX_DONE;
event.data.rxtx.bytes = bytes;
event.data.rxtx.p_data = p_data;
p_cb->handler(&event, p_cb->p_context);
}
__STATIC_INLINE void tx_done_event(uart_control_block_t * p_cb, uint8_t bytes)
{
nrf_drv_uart_event_t event;
event.type = NRF_DRV_UART_EVT_TX_DONE;
event.data.rxtx.bytes = bytes;
event.data.rxtx.p_data = (uint8_t *)p_cb->p_tx_buffer;
p_cb->tx_buffer_length = 0;
NRF_LOG_INFO("TX done len:%d", bytes);
p_cb->handler(&event, p_cb->p_context);
}
void nrf_drv_uart_tx_abort(const nrf_drv_uart_t * p_instance)
{
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
CODE_FOR_UARTE
(
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STOPTX);
if (p_cb->handler == NULL)
{
while (!nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED));
}
)
CODE_FOR_UART
(
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPTX);
if (p_cb->handler)
{
tx_done_event(p_cb, p_cb->tx_counter);
}
else
{
p_cb->tx_counter = TX_COUNTER_ABORT_REQ_VALUE;
}
)
NRF_LOG_INFO("TX abort Id:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
}
void nrf_drv_uart_rx_abort(const nrf_drv_uart_t * p_instance)
{
CODE_FOR_UARTE
(
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STOPRX);
)
CODE_FOR_UART
(
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
)
NRF_LOG_INFO("RX abort Id:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
}
#if defined(UART_IN_USE)
__STATIC_INLINE void uart_irq_handler(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
{
if (nrf_uart_int_enable_check(p_uart, NRF_UART_INT_MASK_ERROR) &&
nrf_uart_event_check(p_uart, NRF_UART_EVENT_ERROR))
{
nrf_drv_uart_event_t event;
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_ERROR);
nrf_uart_int_disable(p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
if (!p_cb->rx_enabled)
{
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STOPRX);
}
event.type = NRF_DRV_UART_EVT_ERROR;
event.data.error.error_mask = nrf_uart_errorsrc_get_and_clear(p_uart);
event.data.error.rxtx.bytes = p_cb->rx_buffer_length;
event.data.error.rxtx.p_data = p_cb->p_rx_buffer;
//abort transfer
p_cb->rx_buffer_length = 0;
p_cb->rx_secondary_buffer_length = 0;
p_cb->handler(&event,p_cb->p_context);
}
else if (nrf_uart_int_enable_check(p_uart, NRF_UART_INT_MASK_RXDRDY) &&
nrf_uart_event_check(p_uart, NRF_UART_EVENT_RXDRDY))
{
rx_byte(p_uart, p_cb);
if (p_cb->rx_buffer_length == p_cb->rx_counter)
{
if (p_cb->rx_secondary_buffer_length)
{
uint8_t * p_data = p_cb->p_rx_buffer;
uint8_t rx_counter = p_cb->rx_counter;
//Switch to secondary buffer.
p_cb->rx_buffer_length = p_cb->rx_secondary_buffer_length;
p_cb->p_rx_buffer = p_cb->p_rx_secondary_buffer;
p_cb->rx_secondary_buffer_length = 0;
p_cb->rx_counter = 0;
rx_done_event(p_cb, rx_counter, p_data);
}
else
{
if (!p_cb->rx_enabled)
{
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STOPRX);
}
nrf_uart_int_disable(p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
p_cb->rx_buffer_length = 0;
rx_done_event(p_cb, p_cb->rx_counter, p_cb->p_rx_buffer);
}
}
}
if (nrf_uart_event_check(p_uart, NRF_UART_EVENT_TXDRDY))
{
if (p_cb->tx_counter < (uint16_t) p_cb->tx_buffer_length)
{
tx_byte(p_uart, p_cb);
}
else
{
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_TXDRDY);
if (p_cb->tx_buffer_length)
{
tx_done_event(p_cb, p_cb->tx_buffer_length);
}
}
}
if (nrf_uart_event_check(p_uart, NRF_UART_EVENT_RXTO))
{
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXTO);
// RXTO event may be triggered as a result of abort call. In th
if (p_cb->rx_enabled)
{
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STARTRX);
}
if (p_cb->rx_buffer_length)
{
p_cb->rx_buffer_length = 0;
rx_done_event(p_cb, p_cb->rx_counter, p_cb->p_rx_buffer);
}
}
}
#endif
#if defined(UARTE_IN_USE)
__STATIC_INLINE void uarte_irq_handler(NRF_UARTE_Type * p_uarte, uart_control_block_t * p_cb)
{
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ERROR))
{
nrf_drv_uart_event_t event;
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ERROR);
event.type = NRF_DRV_UART_EVT_ERROR;
event.data.error.error_mask = nrf_uarte_errorsrc_get_and_clear(p_uarte);
event.data.error.rxtx.bytes = nrf_uarte_rx_amount_get(p_uarte);
event.data.error.rxtx.p_data = p_cb->p_rx_buffer;
//abort transfer
p_cb->rx_buffer_length = 0;
p_cb->rx_secondary_buffer_length = 0;
p_cb->handler(&event, p_cb->p_context);
}
else if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ENDRX))
{
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ENDRX);
uint8_t amount = nrf_uarte_rx_amount_get(p_uarte);
// If the transfer was stopped before completion, amount of transfered bytes
// will not be equal to the buffer length. Interrupted trunsfer is ignored.
if (amount == p_cb->rx_buffer_length)
{
if (p_cb->rx_secondary_buffer_length)
{
uint8_t * p_data = p_cb->p_rx_buffer;
nrf_uarte_shorts_disable(p_uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
p_cb->rx_buffer_length = p_cb->rx_secondary_buffer_length;
p_cb->p_rx_buffer = p_cb->p_rx_secondary_buffer;
p_cb->rx_secondary_buffer_length = 0;
rx_done_event(p_cb, amount, p_data);
}
else
{
p_cb->rx_buffer_length = 0;
rx_done_event(p_cb, amount, p_cb->p_rx_buffer);
}
}
}
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_RXTO))
{
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_RXTO);
if (p_cb->rx_buffer_length)
{
p_cb->rx_buffer_length = 0;
rx_done_event(p_cb, nrf_uarte_rx_amount_get(p_uarte), p_cb->p_rx_buffer);
}
}
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ENDTX))
{
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ENDTX);
if (p_cb->tx_buffer_length)
{
tx_done_event(p_cb, nrf_uarte_tx_amount_get(p_uarte));
}
}
}
#endif
#if UART0_ENABLED
IRQ_HANDLER(0)
{
CODE_FOR_UARTE_INT
(
UART0_INSTANCE_INDEX,
uarte_irq_handler(NRF_UARTE0, &m_cb[UART0_INSTANCE_INDEX]);
)
CODE_FOR_UART
(
uart_irq_handler(NRF_UART0, &m_cb[UART0_INSTANCE_INDEX]);
)
}
#endif
#if UART1_ENABLED
void UARTE1_IRQHandler(void)
{
CODE_FOR_UARTE_INT
(
UART1_INSTANCE_INDEX,
uarte_irq_handler(NRF_UARTE1, &m_cb[UART1_INSTANCE_INDEX]);
)
CODE_FOR_UART
(
uart_irq_handler(NRF_UART1, &m_cb[UART1_INSTANCE_INDEX]);
)
}
#endif
#endif //NRF_MODULE_ENABLED(UART)