simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/drivers_nrf/hal/nrf_pwm.h

662 lines
26 KiB
C

/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
/**
* @defgroup nrf_pwm_hal PWM HAL
* @{
* @ingroup nrf_pwm
*
* @brief @tagAPI52 Hardware access layer for managing the Pulse Width Modulation (PWM)
* peripheral.
*/
#ifndef NRF_PWM_H__
#define NRF_PWM_H__
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include "nrf.h"
#include "nrf_assert.h"
/**
* @brief This value can be provided as a parameter for the @ref nrf_pwm_pins_set
* function call to specify that a given output channel shall not be
* connected to a physical pin.
*/
#define NRF_PWM_PIN_NOT_CONNECTED 0xFFFFFFFF
/**
* @brief Number of channels in each PWM instance.
*/
#define NRF_PWM_CHANNEL_COUNT 4
/**
* @brief PWM tasks.
*/
typedef enum
{
/*lint -save -e30*/
NRF_PWM_TASK_STOP = offsetof(NRF_PWM_Type, TASKS_STOP), ///< Stops PWM pulse generation on all channels at the end of the current PWM period, and stops the sequence playback.
NRF_PWM_TASK_SEQSTART0 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[0]), ///< Starts playback of sequence 0.
NRF_PWM_TASK_SEQSTART1 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[1]), ///< Starts playback of sequence 1.
NRF_PWM_TASK_NEXTSTEP = offsetof(NRF_PWM_Type, TASKS_NEXTSTEP) ///< Steps by one value in the current sequence if the decoder is set to @ref NRF_PWM_STEP_TRIGGERED mode.
/*lint -restore*/
} nrf_pwm_task_t;
/**
* @brief PWM events.
*/
typedef enum
{
/*lint -save -e30*/
NRF_PWM_EVENT_STOPPED = offsetof(NRF_PWM_Type, EVENTS_STOPPED), ///< Response to STOP task, emitted when PWM pulses are no longer generated.
NRF_PWM_EVENT_SEQSTARTED0 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[0]), ///< First PWM period started on sequence 0.
NRF_PWM_EVENT_SEQSTARTED1 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[1]), ///< First PWM period started on sequence 1.
NRF_PWM_EVENT_SEQEND0 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[0]), ///< Emitted at the end of every sequence 0 when its last value has been read from RAM.
NRF_PWM_EVENT_SEQEND1 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[1]), ///< Emitted at the end of every sequence 1 when its last value has been read from RAM.
NRF_PWM_EVENT_PWMPERIODEND = offsetof(NRF_PWM_Type, EVENTS_PWMPERIODEND), ///< Emitted at the end of each PWM period.
NRF_PWM_EVENT_LOOPSDONE = offsetof(NRF_PWM_Type, EVENTS_LOOPSDONE) ///< Concatenated sequences have been played the requested number of times.
/*lint -restore*/
} nrf_pwm_event_t;
/**
* @brief PWM interrupts.
*/
typedef enum
{
NRF_PWM_INT_STOPPED_MASK = PWM_INTENSET_STOPPED_Msk, ///< Interrupt on STOPPED event.
NRF_PWM_INT_SEQSTARTED0_MASK = PWM_INTENSET_SEQSTARTED0_Msk, ///< Interrupt on SEQSTARTED[0] event.
NRF_PWM_INT_SEQSTARTED1_MASK = PWM_INTENSET_SEQSTARTED1_Msk, ///< Interrupt on SEQSTARTED[1] event.
NRF_PWM_INT_SEQEND0_MASK = PWM_INTENSET_SEQEND0_Msk, ///< Interrupt on SEQEND[0] event.
NRF_PWM_INT_SEQEND1_MASK = PWM_INTENSET_SEQEND1_Msk, ///< Interrupt on SEQEND[1] event.
NRF_PWM_INT_PWMPERIODEND_MASK = PWM_INTENSET_PWMPERIODEND_Msk, ///< Interrupt on PWMPERIODEND event.
NRF_PWM_INT_LOOPSDONE_MASK = PWM_INTENSET_LOOPSDONE_Msk ///< Interrupt on LOOPSDONE event.
} nrf_pwm_int_mask_t;
/**
* @brief PWM shortcuts.
*/
typedef enum
{
NRF_PWM_SHORT_SEQEND0_STOP_MASK = PWM_SHORTS_SEQEND0_STOP_Msk, ///< Shortcut between SEQEND[0] event and STOP task.
NRF_PWM_SHORT_SEQEND1_STOP_MASK = PWM_SHORTS_SEQEND1_STOP_Msk, ///< Shortcut between SEQEND[1] event and STOP task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[0] task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART1_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[1] task.
NRF_PWM_SHORT_LOOPSDONE_STOP_MASK = PWM_SHORTS_LOOPSDONE_STOP_Msk ///< Shortcut between LOOPSDONE event and STOP task.
} nrf_pwm_short_mask_t;
/**
* @brief PWM modes of operation.
*/
typedef enum
{
NRF_PWM_MODE_UP = PWM_MODE_UPDOWN_Up, ///< Up counter (edge-aligned PWM duty cycle).
NRF_PWM_MODE_UP_AND_DOWN = PWM_MODE_UPDOWN_UpAndDown, ///< Up and down counter (center-aligned PWM duty cycle).
} nrf_pwm_mode_t;
/**
* @brief PWM base clock frequencies.
*/
typedef enum
{
NRF_PWM_CLK_16MHz = PWM_PRESCALER_PRESCALER_DIV_1, ///< 16 MHz / 1 = 16 MHz.
NRF_PWM_CLK_8MHz = PWM_PRESCALER_PRESCALER_DIV_2, ///< 16 MHz / 2 = 8 MHz.
NRF_PWM_CLK_4MHz = PWM_PRESCALER_PRESCALER_DIV_4, ///< 16 MHz / 4 = 4 MHz.
NRF_PWM_CLK_2MHz = PWM_PRESCALER_PRESCALER_DIV_8, ///< 16 MHz / 8 = 2 MHz.
NRF_PWM_CLK_1MHz = PWM_PRESCALER_PRESCALER_DIV_16, ///< 16 MHz / 16 = 1 MHz.
NRF_PWM_CLK_500kHz = PWM_PRESCALER_PRESCALER_DIV_32, ///< 16 MHz / 32 = 500 kHz.
NRF_PWM_CLK_250kHz = PWM_PRESCALER_PRESCALER_DIV_64, ///< 16 MHz / 64 = 250 kHz.
NRF_PWM_CLK_125kHz = PWM_PRESCALER_PRESCALER_DIV_128 ///< 16 MHz / 128 = 125 kHz.
} nrf_pwm_clk_t;
/**
* @brief PWM decoder load modes.
*
* The selected mode determines how the sequence data is read from RAM and
* spread to the compare registers.
*/
typedef enum
{
NRF_PWM_LOAD_COMMON = PWM_DECODER_LOAD_Common, ///< 1st half word (16-bit) used in all PWM channels (0-3).
NRF_PWM_LOAD_GROUPED = PWM_DECODER_LOAD_Grouped, ///< 1st half word (16-bit) used in channels 0 and 1; 2nd word in channels 2 and 3.
NRF_PWM_LOAD_INDIVIDUAL = PWM_DECODER_LOAD_Individual, ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; 3rd in channel 2; 4th in channel 3.
NRF_PWM_LOAD_WAVE_FORM = PWM_DECODER_LOAD_WaveForm ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; ... ; 4th as the top value for the pulse generator counter.
} nrf_pwm_dec_load_t;
/**
* @brief PWM decoder next step modes.
*
* The selected mode determines when the next value from the active sequence
* is loaded.
*/
typedef enum
{
NRF_PWM_STEP_AUTO = PWM_DECODER_MODE_RefreshCount, ///< Automatically after the current value is played and repeated the requested number of times.
NRF_PWM_STEP_TRIGGERED = PWM_DECODER_MODE_NextStep ///< When the @ref NRF_PWM_TASK_NEXTSTEP task is triggered.
} nrf_pwm_dec_step_t;
/**
* @brief Type used for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_COMMON mode.
*/
typedef uint16_t nrf_pwm_values_common_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_GROUPED mode.
*/
typedef struct {
uint16_t group_0; ///< Duty cycle value for group 0 (channels 0 and 1).
uint16_t group_1; ///< Duty cycle value for group 1 (channels 2 and 3).
} nrf_pwm_values_grouped_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
*/
typedef struct
{
uint16_t channel_0; ///< Duty cycle value for channel 0.
uint16_t channel_1; ///< Duty cycle value for channel 1.
uint16_t channel_2; ///< Duty cycle value for channel 2.
uint16_t channel_3; ///< Duty cycle value for channel 3.
} nrf_pwm_values_individual_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_WAVE_FORM mode.
*/
typedef struct {
uint16_t channel_0; ///< Duty cycle value for channel 0.
uint16_t channel_1; ///< Duty cycle value for channel 1.
uint16_t channel_2; ///< Duty cycle value for channel 2.
uint16_t counter_top; ///< Top value for the pulse generator counter.
} nrf_pwm_values_wave_form_t;
/**
* @brief Union grouping pointers to arrays of duty cycle values applicable to
* various loading modes.
*/
typedef union {
nrf_pwm_values_common_t const * p_common; ///< Pointer to be used in @ref NRF_PWM_LOAD_COMMON mode.
nrf_pwm_values_grouped_t const * p_grouped; ///< Pointer to be used in @ref NRF_PWM_LOAD_GROUPED mode.
nrf_pwm_values_individual_t const * p_individual; ///< Pointer to be used in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
nrf_pwm_values_wave_form_t const * p_wave_form; ///< Pointer to be used in @ref NRF_PWM_LOAD_WAVE_FORM mode.
uint16_t const * p_raw; ///< Pointer providing raw access to the values.
} nrf_pwm_values_t;
/**
* @brief Structure for defining a sequence of PWM duty cycles.
*
* When the sequence is set (by a call to @ref nrf_pwm_sequence_set), the
* provided duty cycle values are not copied. The @p values pointer is stored
* in the peripheral's internal register, and the values are loaded from RAM
* during the sequence playback. Therefore, you must ensure that the values
* do not change before and during the sequence playback (for example,
* the values cannot be placed in a local variable that is allocated on stack).
* If the sequence is played in a loop and the values should be updated
* before the next iteration, it is safe to modify them when the corresponding
* event signaling the end of sequence occurs (@ref NRF_PWM_EVENT_SEQEND0
* or @ref NRF_PWM_EVENT_SEQEND1, respectively).
*
* @note The @p repeats and @p end_delay values (which are written to the
* SEQ[n].REFRESH and SEQ[n].ENDDELAY registers in the peripheral,
* respectively) are ignored at the end of a complex sequence
* playback, indicated by the LOOPSDONE event.
* See the @linkProductSpecification52 for more information.
*/
typedef struct
{
nrf_pwm_values_t values; ///< Pointer to an array with duty cycle values. This array must be in Data RAM.
/**< This field is defined as an union of pointers
* to provide a convenient way to define duty
* cycle values in various loading modes
* (see @ref nrf_pwm_dec_load_t).
* In each value, the most significant bit (15)
* determines the polarity of the output and the
* others (14-0) compose the 15-bit value to be
* compared with the pulse generator counter. */
uint16_t length; ///< Number of 16-bit values in the array pointed by @p values.
uint32_t repeats; ///< Number of times that each duty cycle should be repeated (after being played once). Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
uint32_t end_delay; ///< Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
} nrf_pwm_sequence_t;
/**
* @brief Helper macro for calculating the number of 16-bit values in specified
* array of duty cycle values.
*/
#define NRF_PWM_VALUES_LENGTH(array) (sizeof(array)/sizeof(uint16_t))
/**
* @brief Function for activating a specific PWM task.
*
* @param[in] p_pwm PWM instance.
* @param[in] task Task to activate.
*/
__STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_pwm,
nrf_pwm_task_t task);
/**
* @brief Function for getting the address of a specific PWM task register.
*
* @param[in] p_pwm PWM instance.
* @param[in] task Requested task.
*
* @return Address of the specified task register.
*/
__STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_pwm,
nrf_pwm_task_t task);
/**
* @brief Function for clearing a specific PWM event.
*
* @param[in] p_pwm PWM instance.
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_pwm,
nrf_pwm_event_t event);
/**
* @brief Function for checking the state of a specific PWM event.
*
* @param[in] p_pwm PWM instance.
* @param[in] event Event to check.
*
* @retval true If the event is set.
* @retval false If the event is not set.
*/
__STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_pwm,
nrf_pwm_event_t event);
/**
* @brief Function for getting the address of a specific PWM event register.
*
* @param[in] p_pwm PWM instance.
* @param[in] event Requested event.
*
* @return Address of the specified event register.
*/
__STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_pwm,
nrf_pwm_event_t event);
/**
* @brief Function for enabling specified shortcuts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_shorts_mask Shortcuts to enable.
*/
__STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask);
/**
* @brief Function for disabling specified shortcuts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_shorts_mask Shortcuts to disable.
*/
__STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask);
/**
* @brief Function for setting the configuration of PWM shortcuts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_shorts_mask Shortcuts configuration to set.
*/
__STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask);
/**
* @brief Function for enabling specified interrupts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_int_mask Interrupts to enable.
*/
__STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask);
/**
* @brief Function for disabling specified interrupts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_int_mask Interrupts to disable.
*/
__STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask);
/**
* @brief Function for setting the configuration of PWM interrupts.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_int_mask Interrupts configuration to set.
*/
__STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param[in] p_pwm PWM instance.
* @param[in] pwm_int Interrupt to check.
*
* @retval true If the interrupt is enabled.
* @retval false If the interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_pwm_int_enable_check(NRF_PWM_Type const * p_pwm,
nrf_pwm_int_mask_t pwm_int);
/**
* @brief Function for enabling the PWM peripheral.
*
* @param[in] p_pwm PWM instance.
*/
__STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_pwm);
/**
* @brief Function for disabling the PWM peripheral.
*
* @param[in] p_pwm PWM instance.
*/
__STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_pwm);
/**
* @brief Function for assigning pins to PWM output channels.
*
* Usage of all PWM output channels is optional. If a given channel is not
* needed, pass the @ref NRF_PWM_PIN_NOT_CONNECTED value instead of its pin
* number.
*
* @param[in] p_pwm PWM instance.
* @param[in] out_pins Array with pin numbers for individual PWM output channels.
*/
__STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_pwm,
uint32_t out_pins[NRF_PWM_CHANNEL_COUNT]);
/**
* @brief Function for configuring the PWM peripheral.
*
* @param[in] p_pwm PWM instance.
* @param[in] base_clock Base clock frequency.
* @param[in] mode Operating mode of the pulse generator counter.
* @param[in] top_value Value up to which the pulse generator counter counts.
*/
__STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_pwm,
nrf_pwm_clk_t base_clock,
nrf_pwm_mode_t mode,
uint16_t top_value);
/**
* @brief Function for defining a sequence of PWM duty cycles.
*
* @param[in] p_pwm PWM instance.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] p_seq Pointer to the sequence definition.
*/
__STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
nrf_pwm_sequence_t const * p_seq);
/**
* @brief Function for modifying the pointer to the duty cycle values
* in the specified sequence.
*
* @param[in] p_pwm PWM instance.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] p_values Pointer to an array with duty cycle values.
*/
__STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint16_t const * p_values);
/**
* @brief Function for modifying the total number of duty cycle values
* in the specified sequence.
*
* @param[in] p_pwm PWM instance.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] length Number of duty cycle values.
*/
__STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint16_t length);
/**
* @brief Function for modifying the additional number of PWM periods spent
* on each duty cycle value in the specified sequence.
*
* @param[in] p_pwm PWM instance.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] refresh Number of additional PWM periods for each duty cycle value.
*/
__STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint32_t refresh);
/**
* @brief Function for modifying the additional time added after the sequence
* is played.
*
* @param[in] p_pwm PWM instance.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] end_delay Number of PWM periods added at the end of the sequence.
*/
__STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint32_t end_delay);
/**
* @brief Function for setting the mode of loading sequence data from RAM
* and advancing the sequence.
*
* @param[in] p_pwm PWM instance.
* @param[in] dec_load Mode of loading sequence data from RAM.
* @param[in] dec_step Mode of advancing the active sequence.
*/
__STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_pwm,
nrf_pwm_dec_load_t dec_load,
nrf_pwm_dec_step_t dec_step);
/**
* @brief Function for setting the number of times the sequence playback
* should be performed.
*
* This function applies to two-sequence playback (concatenated sequence 0 and 1).
* A single sequence can be played back only once.
*
* @param[in] p_pwm PWM instance.
* @param[in] loop_count Number of times to perform the sequence playback.
*/
__STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_pwm,
uint16_t loop_count);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_pwm,
nrf_pwm_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_pwm + (uint32_t)task)) = 0x1UL;
}
__STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_pwm,
nrf_pwm_task_t task)
{
return ((uint32_t)p_pwm + (uint32_t)task);
}
__STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_pwm,
nrf_pwm_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_pwm + (uint32_t)event)) = 0x0UL;
}
__STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_pwm,
nrf_pwm_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_pwm + (uint32_t)event);
}
__STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_pwm,
nrf_pwm_event_t event)
{
return ((uint32_t)p_pwm + (uint32_t)event);
}
__STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask)
{
p_pwm->SHORTS |= pwm_shorts_mask;
}
__STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask)
{
p_pwm->SHORTS &= ~(pwm_shorts_mask);
}
__STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_pwm,
uint32_t pwm_shorts_mask)
{
p_pwm->SHORTS = pwm_shorts_mask;
}
__STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask)
{
p_pwm->INTENSET = pwm_int_mask;
}
__STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask)
{
p_pwm->INTENCLR = pwm_int_mask;
}
__STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_pwm,
uint32_t pwm_int_mask)
{
p_pwm->INTEN = pwm_int_mask;
}
__STATIC_INLINE bool nrf_pwm_int_enable_check(NRF_PWM_Type const * p_pwm,
nrf_pwm_int_mask_t pwm_int)
{
return (bool)(p_pwm->INTENSET & pwm_int);
}
__STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_pwm)
{
p_pwm->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
}
__STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_pwm)
{
p_pwm->ENABLE = (PWM_ENABLE_ENABLE_Disabled << PWM_ENABLE_ENABLE_Pos);
}
__STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_pwm,
uint32_t out_pins[NRF_PWM_CHANNEL_COUNT])
{
uint8_t i;
for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i)
{
p_pwm->PSEL.OUT[i] = out_pins[i];
}
}
__STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_pwm,
nrf_pwm_clk_t base_clock,
nrf_pwm_mode_t mode,
uint16_t top_value)
{
ASSERT(top_value <= PWM_COUNTERTOP_COUNTERTOP_Msk);
p_pwm->PRESCALER = base_clock;
p_pwm->MODE = mode;
p_pwm->COUNTERTOP = top_value;
}
__STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
nrf_pwm_sequence_t const * p_seq)
{
ASSERT(p_seq != NULL);
nrf_pwm_seq_ptr_set( p_pwm, seq_id, p_seq->values.p_raw);
nrf_pwm_seq_cnt_set( p_pwm, seq_id, p_seq->length);
nrf_pwm_seq_refresh_set( p_pwm, seq_id, p_seq->repeats);
nrf_pwm_seq_end_delay_set(p_pwm, seq_id, p_seq->end_delay);
}
__STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint16_t const * p_values)
{
ASSERT(seq_id <= 1);
ASSERT(p_values != NULL);
p_pwm->SEQ[seq_id].PTR = (uint32_t)p_values;
}
__STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint16_t length)
{
ASSERT(seq_id <= 1);
ASSERT(length != 0);
ASSERT(length <= PWM_SEQ_CNT_CNT_Msk);
p_pwm->SEQ[seq_id].CNT = length;
}
__STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint32_t refresh)
{
ASSERT(seq_id <= 1);
ASSERT(refresh <= PWM_SEQ_REFRESH_CNT_Msk);
p_pwm->SEQ[seq_id].REFRESH = refresh;
}
__STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_pwm,
uint8_t seq_id,
uint32_t end_delay)
{
ASSERT(seq_id <= 1);
ASSERT(end_delay <= PWM_SEQ_ENDDELAY_CNT_Msk);
p_pwm->SEQ[seq_id].ENDDELAY = end_delay;
}
__STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_pwm,
nrf_pwm_dec_load_t dec_load,
nrf_pwm_dec_step_t dec_step)
{
p_pwm->DECODER = ((uint32_t)dec_load << PWM_DECODER_LOAD_Pos) |
((uint32_t)dec_step << PWM_DECODER_MODE_Pos);
}
__STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_pwm,
uint16_t loop_count)
{
p_pwm->LOOP = loop_count;
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
#endif // NRF_PWM_H__
/** @} */