simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/drivers_nrf/hal/nrf_adc.h

417 lines
12 KiB
C

/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#ifndef NRF_ADC_H_
#define NRF_ADC_H_
/**
* @defgroup nrf_adc_hal ADC HAL
* @{
* @ingroup nrf_adc
* @brief @tagAPI51 Hardware access layer for managing the analog-to-digital converter (ADC).
*/
#include <stdbool.h>
#include <stddef.h>
#include "nrf.h"
#ifndef NRF52
/**
* @enum nrf_adc_config_resolution_t
* @brief Resolution of the analog-to-digital converter.
*/
/**
* @brief ADC interrupts.
*/
typedef enum
{
NRF_ADC_INT_END_MASK = ADC_INTENSET_END_Msk, /**< ADC interrupt on END event. */
} nrf_adc_int_mask_t;
typedef enum
{
NRF_ADC_CONFIG_RES_8BIT = ADC_CONFIG_RES_8bit, /**< 8 bit resolution. */
NRF_ADC_CONFIG_RES_9BIT = ADC_CONFIG_RES_9bit, /**< 9 bit resolution. */
NRF_ADC_CONFIG_RES_10BIT = ADC_CONFIG_RES_10bit, /**< 10 bit resolution. */
} nrf_adc_config_resolution_t;
/**
* @enum nrf_adc_config_scaling_t
* @brief Scaling factor of the analog-to-digital conversion.
*/
typedef enum
{
NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE = ADC_CONFIG_INPSEL_AnalogInputNoPrescaling, /**< Full scale input. */
NRF_ADC_CONFIG_SCALING_INPUT_TWO_THIRDS = ADC_CONFIG_INPSEL_AnalogInputTwoThirdsPrescaling, /**< 2/3 scale input. */
NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD = ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling, /**< 1/3 scale input. */
NRF_ADC_CONFIG_SCALING_SUPPLY_TWO_THIRDS = ADC_CONFIG_INPSEL_SupplyTwoThirdsPrescaling, /**< 2/3 of supply. */
NRF_ADC_CONFIG_SCALING_SUPPLY_ONE_THIRD = ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling /**< 1/3 of supply. */
} nrf_adc_config_scaling_t;
/**
* @enum nrf_adc_config_reference_t
* @brief Reference selection of the analog-to-digital converter.
*/
typedef enum
{
NRF_ADC_CONFIG_REF_VBG = ADC_CONFIG_REFSEL_VBG, /**< 1.2 V reference. */
NRF_ADC_CONFIG_REF_SUPPLY_ONE_HALF = ADC_CONFIG_REFSEL_SupplyOneHalfPrescaling, /**< 1/2 of power supply. */
NRF_ADC_CONFIG_REF_SUPPLY_ONE_THIRD = ADC_CONFIG_REFSEL_SupplyOneThirdPrescaling, /**< 1/3 of power supply. */
NRF_ADC_CONFIG_REF_EXT_REF0 = ADC_CONFIG_REFSEL_External |
ADC_CONFIG_EXTREFSEL_AnalogReference0 <<
ADC_CONFIG_EXTREFSEL_Pos, /**< External reference 0. */
NRF_ADC_CONFIG_REF_EXT_REF1 = ADC_CONFIG_REFSEL_External |
ADC_CONFIG_EXTREFSEL_AnalogReference1 << ADC_CONFIG_EXTREFSEL_Pos, /**< External reference 0. */
} nrf_adc_config_reference_t;
/**
* @enum nrf_adc_config_input_t
* @brief Input selection of the analog-to-digital converter.
*/
typedef enum
{
NRF_ADC_CONFIG_INPUT_DISABLED = ADC_CONFIG_PSEL_Disabled, /**< No input selected. */
NRF_ADC_CONFIG_INPUT_0 = ADC_CONFIG_PSEL_AnalogInput0, /**< Input 0. */
NRF_ADC_CONFIG_INPUT_1 = ADC_CONFIG_PSEL_AnalogInput1, /**< Input 1. */
NRF_ADC_CONFIG_INPUT_2 = ADC_CONFIG_PSEL_AnalogInput2, /**< Input 2. */
NRF_ADC_CONFIG_INPUT_3 = ADC_CONFIG_PSEL_AnalogInput3, /**< Input 3. */
NRF_ADC_CONFIG_INPUT_4 = ADC_CONFIG_PSEL_AnalogInput4, /**< Input 4. */
NRF_ADC_CONFIG_INPUT_5 = ADC_CONFIG_PSEL_AnalogInput5, /**< Input 5. */
NRF_ADC_CONFIG_INPUT_6 = ADC_CONFIG_PSEL_AnalogInput6, /**< Input 6. */
NRF_ADC_CONFIG_INPUT_7 = ADC_CONFIG_PSEL_AnalogInput7, /**< Input 7. */
} nrf_adc_config_input_t;
/**
* @enum nrf_adc_task_t
* @brief Analog-to-digital converter tasks.
*/
typedef enum
{
/*lint -save -e30*/
NRF_ADC_TASK_START = offsetof(NRF_ADC_Type, TASKS_START), /**< ADC start sampling task. */
NRF_ADC_TASK_STOP = offsetof(NRF_ADC_Type, TASKS_STOP) /**< ADC stop sampling task. */
/*lint -restore*/
} nrf_adc_task_t;
/**
* @enum nrf_adc_event_t
* @brief Analog-to-digital converter events.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
/*lint -save -e30*/
NRF_ADC_EVENT_END = offsetof(NRF_ADC_Type, EVENTS_END) /**< End of conversion event. */
/*lint -restore*/
} nrf_adc_event_t;
/**@brief Analog-to-digital converter configuration. */
typedef struct
{
nrf_adc_config_resolution_t resolution; /**< ADC resolution. */
nrf_adc_config_scaling_t scaling; /**< ADC scaling factor. */
nrf_adc_config_reference_t reference; /**< ADC reference. */
} nrf_adc_config_t;
/** Default ADC configuration. */
#define NRF_ADC_CONFIG_DEFAULT { NRF_ADC_CONFIG_RES_10BIT, \
NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD, \
NRF_ADC_CONFIG_REF_VBG }
/**
* @brief Function for configuring ADC.
*
* This function powers on the analog-to-digital converter and configures it.
* After the configuration, the ADC is in DISABLE state and must be
* enabled before using it.
*
* @param[in] config Configuration parameters.
*/
void nrf_adc_configure(nrf_adc_config_t * config);
/**
* @brief Blocking function for executing a single ADC conversion.
*
* This function selects the desired input, starts a single conversion,
* waits for it to finish, and returns the result.
* After the input is selected, the analog-to-digital converter
* is left in STOP state.
* The function does not check if the ADC is initialized and powered.
*
* @param[in] input Input to be selected.
*
* @return Conversion result.
*/
int32_t nrf_adc_convert_single(nrf_adc_config_input_t input);
/**
* @brief Function for selecting ADC input.
*
* This function selects the active input of ADC. Ensure that
* the ADC is powered on and in IDLE state before calling this function.
*
* @param[in] input Input to be selected.
*/
__STATIC_INLINE void nrf_adc_input_select(nrf_adc_config_input_t input)
{
NRF_ADC->CONFIG =
((uint32_t)input << ADC_CONFIG_PSEL_Pos) | (NRF_ADC->CONFIG & ~ADC_CONFIG_PSEL_Msk);
if (input != NRF_ADC_CONFIG_INPUT_DISABLED)
{
NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled << ADC_ENABLE_ENABLE_Pos;
}
else
{
NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled << ADC_ENABLE_ENABLE_Pos;
}
}
/**
* @brief Function for retrieving the ADC conversion result.
*
* This function retrieves and returns the last analog-to-digital conversion result.
*
* @return Last conversion result.
*/
__STATIC_INLINE int32_t nrf_adc_result_get(void)
{
return (int32_t)NRF_ADC->RESULT;
}
/**
* @brief Function for checking whether the ADC is busy.
*
* This function checks whether the analog-to-digital converter is busy with a conversion.
*
* @retval true If the ADC is busy.
* @retval false If the ADC is not busy.
*/
__STATIC_INLINE bool nrf_adc_is_busy(void)
{
return ( (NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) == ADC_BUSY_BUSY_Msk);
}
/**
* @brief Function for getting the ADC's enabled interrupts.
*
* @param[in] mask Mask of interrupts to check.
*
* @return State of the interrupts selected by the mask.
*
* @sa nrf_adc_int_enable()
* @sa nrf_adc_int_disable()
*/
__STATIC_INLINE uint32_t nrf_adc_int_get(uint32_t mask)
{
return (NRF_ADC->INTENSET & mask); // when read this register will return the value of INTEN.
}
/**
* @brief Function for starting conversion.
*
* @sa nrf_adc_stop()
*
*/
__STATIC_INLINE void nrf_adc_start(void)
{
NRF_ADC->TASKS_START = 1;
}
/**
* @brief Function for stopping conversion.
*
* If the analog-to-digital converter is in inactive state, power consumption is reduced.
*
* @sa nrf_adc_start()
*
*/
__STATIC_INLINE void nrf_adc_stop(void)
{
NRF_ADC->TASKS_STOP = 1;
}
/**
* @brief Function for checking if the requested ADC conversion has ended.
*
* @retval true If the task has finished.
* @retval false If the task is still running.
*/
__STATIC_INLINE bool nrf_adc_conversion_finished(void)
{
return ((bool)NRF_ADC->EVENTS_END);
}
/**
* @brief Function for clearing the conversion END event.
*/
__STATIC_INLINE void nrf_adc_conversion_event_clean(void)
{
NRF_ADC->EVENTS_END = 0;
}
/**
* @brief Function for getting the address of an ADC task register.
*
* @param[in] adc_task ADC task.
*
* @return Address of the specified ADC task.
*/
__STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t adc_task);
/**
* @brief Function for getting the address of a specific ADC event register.
*
* @param[in] adc_event ADC event.
*
* @return Address of the specified ADC event.
*/
__STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event);
/**
* @brief Function for setting the CONFIG register in ADC.
*
* @param[in] configuration Value to be written to the CONFIG register.
*/
__STATIC_INLINE void nrf_adc_config_set(uint32_t configuration);
/**
* @brief Function for clearing an ADC event.
*
* @param[in] event Event to clear.
*/
__STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event);
/**
* @brief Function for checking state of an ADC event.
*
* @param[in] event Event to check.
*
* @retval true If the event is set.
* @retval false If the event is not set.
*/
__STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event);
/**
* @brief Function for enabling specified interrupts.
*
* @param[in] int_mask Interrupts to enable.
*/
__STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask);
/**
* @brief Function for disabling specified interrupts.
*
* @param[in] int_mask Interrupts to disable.
*/
__STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask);
/**
* @brief Function for retrieving the state of a given interrupt.
*
* @param[in] int_mask Interrupt to check.
*
* @retval true If the interrupt is enabled.
* @retval false If the interrupt is not enabled.
*/
__STATIC_INLINE bool nrf_adc_int_enable_check(nrf_adc_int_mask_t int_mask);
/**
* @brief Function for activating a specific ADC task.
*
* @param[in] task Task to activate.
*/
__STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task);
/**
* @brief Function for enabling ADC.
*
*/
__STATIC_INLINE void nrf_adc_enable(void);
/**
* @brief Function for disabling ADC.
*
*/
__STATIC_INLINE void nrf_adc_disable(void);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t adc_task)
{
return (uint32_t)((uint8_t *)NRF_ADC + adc_task);
}
__STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event)
{
return (uint32_t)((uint8_t *)NRF_ADC + adc_event);
}
__STATIC_INLINE void nrf_adc_config_set(uint32_t configuration)
{
NRF_ADC->CONFIG = configuration;
}
__STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event)
{
*((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event)) = 0x0UL;
}
__STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event);
}
__STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask)
{
NRF_ADC->INTENSET = int_mask;
}
__STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask)
{
NRF_ADC->INTENCLR = int_mask;
}
__STATIC_INLINE bool nrf_adc_int_enable_check(nrf_adc_int_mask_t int_mask)
{
return (bool)(NRF_ADC->INTENSET & int_mask);
}
__STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task)
{
*((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)task)) = 0x1UL;
}
__STATIC_INLINE void nrf_adc_enable(void)
{
NRF_ADC->ENABLE = 1;
}
__STATIC_INLINE void nrf_adc_disable(void)
{
NRF_ADC->ENABLE = 0;
}
#endif
#endif /* NRF52 */
/**
*@}
**/
#endif /* NRF_ADC_H_ */