simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/libraries/util/app_util.h
2018-02-07 23:32:49 +07:00

494 lines
16 KiB
C

/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
/** @file
*
* @defgroup app_util Utility Functions and Definitions
* @{
* @ingroup app_common
*
* @brief Various types and definitions available to all applications.
*/
#ifndef APP_UTIL_H__
#define APP_UTIL_H__
#include <stdint.h>
#include <stdbool.h>
#include "compiler_abstraction.h"
#include "nrf.h"
//lint -save -e27 -e10 -e19
#if defined ( __CC_ARM )
extern char STACK$$Base;
extern char STACK$$Length;
#define STACK_BASE &STACK$$Base
#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length))
#elif defined ( __ICCARM__ )
extern char CSTACK$$Base;
extern char CSTACK$$Length;
#define STACK_BASE &CSTACK$$Base
#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length))
#elif defined ( __GNUC__ )
extern uint32_t __StackTop;
extern uint32_t __StackLimit;
#define STACK_BASE &__StackLimit
#define STACK_TOP &__StackTop
#endif
//lint -restore
enum
{
UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */
UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */
UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */
};
/**@brief Implementation specific macro for delayed macro expansion used in string concatenation
*
* @param[in] lhs Left hand side in concatenation
* @param[in] rhs Right hand side in concatenation
*/
#define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs
/**@brief Macro used to concatenate string using delayed macro expansion
*
* @note This macro will delay concatenation until the expressions have been resolved
*
* @param[in] lhs Left hand side in concatenation
* @param[in] rhs Right hand side in concatenation
*/
#define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs)
// Disable lint-warnings/errors for STATIC_ASSERT
//lint --emacro(10,STATIC_ASSERT)
//lint --emacro(18,STATIC_ASSERT)
//lint --emacro(19,STATIC_ASSERT)
//lint --emacro(30,STATIC_ASSERT)
//lint --emacro(37,STATIC_ASSERT)
//lint --emacro(42,STATIC_ASSERT)
//lint --emacro(26,STATIC_ASSERT)
//lint --emacro(102,STATIC_ASSERT)
//lint --emacro(533,STATIC_ASSERT)
//lint --emacro(534,STATIC_ASSERT)
//lint --emacro(132,STATIC_ASSERT)
//lint --emacro(414,STATIC_ASSERT)
//lint --emacro(578,STATIC_ASSERT)
//lint --emacro(628,STATIC_ASSERT)
//lint --emacro(648,STATIC_ASSERT)
//lint --emacro(830,STATIC_ASSERT)
/**@brief Macro for doing static (i.e. compile time) assertion.
*
* @note If the EXPR isn't resolvable, then the error message won't be shown.
*
* @note The output of STATIC_ASSERT will be different across different compilers.
*
* @param[in] EXPR Constant expression to be verified.
*/
#if defined ( __COUNTER__ )
#define STATIC_ASSERT(EXPR) \
;enum { STRING_CONCATENATE(static_assert_, __COUNTER__) = 1/(!!(EXPR)) }
#else
#define STATIC_ASSERT(EXPR) \
;enum { STRING_CONCATENATE(assert_line_, __LINE__) = 1/(!!(EXPR)) }
#endif
/**@brief Implementation details for NUM_VAR_ARGS */
#define NUM_VA_ARGS_IMPL( \
_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
_21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
_31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
_41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \
_51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \
_61, _62, N, ...) N
/**@brief Macro to get the number of arguments in a call variadic macro call
*
* param[in] ... List of arguments
*
* @retval Number of variadic arguments in the argument list
*/
#define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61, \
60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
typedef uint8_t uint16_le_t[2];
/**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
typedef uint8_t uint32_le_t[4];
/**@brief Byte array type. */
typedef struct
{
uint16_t size; /**< Number of array entries. */
uint8_t * p_data; /**< Pointer to array entries. */
} uint8_array_t;
/**@brief Macro for performing rounded integer division (as opposed to truncating the result).
*
* @param[in] A Numerator.
* @param[in] B Denominator.
*
* @return Rounded (integer) result of dividing A by B.
*/
#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
/**@brief Macro for checking if an integer is a power of two.
*
* @param[in] A Number to be tested.
*
* @return true if value is power of two.
* @return false if value not power of two.
*/
#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
/**@brief Macro for converting milliseconds to ticks.
*
* @param[in] TIME Number of milliseconds to convert.
* @param[in] RESOLUTION Unit to be converted to in [us/ticks].
*/
#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
/**@brief Macro for performing integer division, making sure the result is rounded up.
*
* @details One typical use for this is to compute the number of objects with size B is needed to
* hold A number of bytes.
*
* @param[in] A Numerator.
* @param[in] B Denominator.
*
* @return Integer result of dividing A by B, rounded up.
*/
#define CEIL_DIV(A, B) \
(((A) + (B) - 1) / (B))
/**@brief Macro for creating a buffer aligned to 4 bytes.
*
* @param[in] NAME Name of the buffor.
* @param[in] MIN_SIZE Size of this buffor (it will be rounded up to multiples of 4 bytes).
*/
#define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))]
/**@brief Macro for calculating the number of words that are needed to hold a number of bytes.
*
* @details Adds 3 and divides by 4.
*
* @param[in] n_bytes The number of bytes.
*
* @return The number of words that @p n_bytes take up (rounded up).
*/
#define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2)
/**@brief The number of bytes in a word.
*/
#define BYTES_PER_WORD (4)
/**@brief Macro for increasing a number to the nearest (larger) multiple of another number.
*
* @param[in] alignment The number to align to.
* @param[in] number The number to align (increase).
*
* @return The aligned (increased) @p number.
*/
#define ALIGN_NUM(alignment, number) ((number - 1) + alignment - ((number - 1) % alignment))
/**@brief Function for changing the value unit.
*
* @param[in] value Value to be rescaled.
* @param[in] old_unit_reversal Reversal of the incoming unit.
* @param[in] new_unit_reversal Reversal of the desired unit.
*
* @return Number of bytes written.
*/
static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal)
{
return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal);
}
/**@brief Function for encoding a uint16 value.
*
* @param[in] value Value to be encoded.
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
*
* @return Number of bytes written.
*/
static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
{
p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
return sizeof(uint16_t);
}
/**@brief Function for encoding a three-byte value.
*
* @param[in] value Value to be encoded.
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
*
* @return Number of bytes written.
*/
static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data)
{
p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
return 3;
}
/**@brief Function for encoding a uint32 value.
*
* @param[in] value Value to be encoded.
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
*
* @return Number of bytes written.
*/
static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
{
p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
return sizeof(uint32_t);
}
/**@brief Function for encoding a uint48 value.
*
* @param[in] value Value to be encoded.
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
*
* @return Number of bytes written.
*/
static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data)
{
p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0);
p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8);
p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16);
p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24);
p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32);
p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40);
return 6;
}
/**@brief Function for decoding a uint16 value.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value.
*/
static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
{
return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
(((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
}
/**@brief Function for decoding a uint16 value in big-endian format.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value.
*/
static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data)
{
return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) |
(((uint16_t)((uint8_t *)p_encoded_data)[1])) );
}
/**@brief Function for decoding a three-byte value.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value (uint32_t).
*/
static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data)
{
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16));
}
/**@brief Function for decoding a uint32 value.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value.
*/
static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
{
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
(((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
}
/**@brief Function for decoding a uint32 value in big-endian format.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value.
*/
static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data)
{
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) |
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) |
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8) |
(((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) );
}
/**@brief Function for encoding a uint32 value in big-endian format.
*
* @param[in] value Value to be encoded.
* @param[out] p_encoded_data Buffer where the encoded data will be written.
*
* @return Number of bytes written.
*/
static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data)
{
#ifdef NRF51
p_encoded_data[0] = (uint8_t) ((value & 0xFF000000) >> 24);
p_encoded_data[1] = (uint8_t) ((value & 0x00FF0000) >> 16);
p_encoded_data[2] = (uint8_t) ((value & 0x0000FF00) >> 8);
p_encoded_data[3] = (uint8_t) ((value & 0x000000FF) >> 0);
#elif NRF52
*(uint32_t *)p_encoded_data = __REV(value);
#endif
return sizeof(uint32_t);
}
/**@brief Function for decoding a uint48 value.
*
* @param[in] p_encoded_data Buffer where the encoded data is stored.
*
* @return Decoded value. (uint64_t)
*/
static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data)
{
return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) |
(((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) |
(((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) |
(((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) |
(((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) |
(((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 ));
}
/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
*
* @details The calculation is based on a linearized version of the battery's discharge
* curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
* is considered to be the lower boundary.
*
* The discharge curve for CR2032 is non-linear. In this model it is split into
* 4 linear sections:
* - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
* - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
* - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
* - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
*
* These numbers are by no means accurate. Temperature and
* load in the actual application is not accounted for!
*
* @param[in] mvolts The voltage in mV
*
* @return Battery level in percent.
*/
static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
{
uint8_t battery_level;
if (mvolts >= 3000)
{
battery_level = 100;
}
else if (mvolts > 2900)
{
battery_level = 100 - ((3000 - mvolts) * 58) / 100;
}
else if (mvolts > 2740)
{
battery_level = 42 - ((2900 - mvolts) * 24) / 160;
}
else if (mvolts > 2440)
{
battery_level = 18 - ((2740 - mvolts) * 12) / 300;
}
else if (mvolts > 2100)
{
battery_level = 6 - ((2440 - mvolts) * 6) / 340;
}
else
{
battery_level = 0;
}
return battery_level;
}
/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
*
* @param[in] p Pointer value to be checked.
*
* @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
*/
static __INLINE bool is_word_aligned(void const* p)
{
return (((uintptr_t)p & 0x03) == 0);
}
/**
* @brief Function for checking if provided address is located in stack space.
*
* @param[in] ptr Pointer to be checked.
*
* @return true if address is in stack space, false otherwise.
*/
static __INLINE bool is_address_from_stack(void * ptr)
{
if (((uint32_t)ptr >= (uint32_t)STACK_BASE) &&
((uint32_t)ptr < (uint32_t)STACK_TOP) )
{
return true;
}
else
{
return false;
}
}
#endif // APP_UTIL_H__
/** @} */