simmel-bootloader/nRF5_SDK_11.0.0_89a8197/components/libraries/scheduler/app_scheduler.c
2018-02-07 23:32:49 +07:00

228 lines
7.3 KiB
C

/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "app_scheduler.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "nrf_soc.h"
#include "nrf_assert.h"
#include "app_util.h"
#include "app_util_platform.h"
/**@brief Structure for holding a scheduled event header. */
typedef struct
{
app_sched_event_handler_t handler; /**< Pointer to event handler to receive the event. */
uint16_t event_data_size; /**< Size of event data. */
} event_header_t;
STATIC_ASSERT(sizeof(event_header_t) <= APP_SCHED_EVENT_HEADER_SIZE);
static event_header_t * m_queue_event_headers; /**< Array for holding the queue event headers. */
static uint8_t * m_queue_event_data; /**< Array for holding the queue event data. */
static volatile uint8_t m_queue_start_index; /**< Index of queue entry at the start of the queue. */
static volatile uint8_t m_queue_end_index; /**< Index of queue entry at the end of the queue. */
static uint16_t m_queue_event_size; /**< Maximum event size in queue. */
static uint16_t m_queue_size; /**< Number of queue entries. */
#ifdef APP_SCHEDULER_WITH_PROFILER
static uint16_t m_max_queue_utilization; /**< Maximum observed queue utilization. */
#endif
/**@brief Function for incrementing a queue index, and handle wrap-around.
*
* @param[in] index Old index.
*
* @return New (incremented) index.
*/
static __INLINE uint8_t next_index(uint8_t index)
{
return (index < m_queue_size) ? (index + 1) : 0;
}
static __INLINE uint8_t app_sched_queue_full()
{
uint8_t tmp = m_queue_start_index;
return next_index(m_queue_end_index) == tmp;
}
/**@brief Macro for checking if a queue is full. */
#define APP_SCHED_QUEUE_FULL() app_sched_queue_full()
static __INLINE uint8_t app_sched_queue_empty()
{
uint8_t tmp = m_queue_start_index;
return m_queue_end_index == tmp;
}
/**@brief Macro for checking if a queue is empty. */
#define APP_SCHED_QUEUE_EMPTY() app_sched_queue_empty()
uint32_t app_sched_init(uint16_t event_size, uint16_t queue_size, void * p_event_buffer)
{
uint16_t data_start_index = (queue_size + 1) * sizeof(event_header_t);
// Check that buffer is correctly aligned
if (!is_word_aligned(p_event_buffer))
{
return NRF_ERROR_INVALID_PARAM;
}
// Initialize event scheduler
m_queue_event_headers = p_event_buffer;
m_queue_event_data = &((uint8_t *)p_event_buffer)[data_start_index];
m_queue_end_index = 0;
m_queue_start_index = 0;
m_queue_event_size = event_size;
m_queue_size = queue_size;
#ifdef APP_SCHEDULER_WITH_PROFILER
m_max_queue_utilization = 0;
#endif
return NRF_SUCCESS;
}
#ifdef APP_SCHEDULER_WITH_PROFILER
static void queue_utilization_check(void)
{
uint16_t start = m_queue_start_index;
uint16_t end = m_queue_end_index;
uint16_t queue_utilization = (end >= start) ? (end - start) :
(m_queue_size + 1 - start + end);
if (queue_utilization > m_max_queue_utilization)
{
m_max_queue_utilization = queue_utilization;
}
}
uint16_t app_sched_queue_utilization_get(void)
{
return m_max_queue_utilization;
}
#endif
uint32_t app_sched_event_put(void * p_event_data,
uint16_t event_data_size,
app_sched_event_handler_t handler)
{
uint32_t err_code;
if (event_data_size <= m_queue_event_size)
{
uint16_t event_index = 0xFFFF;
CRITICAL_REGION_ENTER();
if (!APP_SCHED_QUEUE_FULL())
{
event_index = m_queue_end_index;
m_queue_end_index = next_index(m_queue_end_index);
#ifdef APP_SCHEDULER_WITH_PROFILER
// This function call must be protected with critical region because
// it modifies 'm_max_queue_utilization'.
queue_utilization_check();
#endif
}
CRITICAL_REGION_EXIT();
if (event_index != 0xFFFF)
{
// NOTE: This can be done outside the critical region since the event consumer will
// always be called from the main loop, and will thus never interrupt this code.
m_queue_event_headers[event_index].handler = handler;
if ((p_event_data != NULL) && (event_data_size > 0))
{
memcpy(&m_queue_event_data[event_index * m_queue_event_size],
p_event_data,
event_data_size);
m_queue_event_headers[event_index].event_data_size = event_data_size;
}
else
{
m_queue_event_headers[event_index].event_data_size = 0;
}
err_code = NRF_SUCCESS;
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
else
{
err_code = NRF_ERROR_INVALID_LENGTH;
}
return err_code;
}
/**@brief Function for reading the next event from specified event queue.
*
* @param[out] pp_event_data Pointer to pointer to event data.
* @param[out] p_event_data_size Pointer to size of event data.
* @param[out] p_event_handler Pointer to event handler function pointer.
*
* @return NRF_SUCCESS if new event, NRF_ERROR_NOT_FOUND if event queue is empty.
*/
static uint32_t app_sched_event_get(void ** pp_event_data,
uint16_t * p_event_data_size,
app_sched_event_handler_t * p_event_handler)
{
uint32_t err_code = NRF_ERROR_NOT_FOUND;
if (!APP_SCHED_QUEUE_EMPTY())
{
uint16_t event_index;
// NOTE: There is no need for a critical region here, as this function will only be called
// from app_sched_execute() from inside the main loop, so it will never interrupt
// app_sched_event_put(). Also, updating of (i.e. writing to) the start index will be
// an atomic operation.
event_index = m_queue_start_index;
m_queue_start_index = next_index(m_queue_start_index);
*pp_event_data = &m_queue_event_data[event_index * m_queue_event_size];
*p_event_data_size = m_queue_event_headers[event_index].event_data_size;
*p_event_handler = m_queue_event_headers[event_index].handler;
err_code = NRF_SUCCESS;
}
return err_code;
}
void app_sched_execute(void)
{
void * p_event_data;
uint16_t event_data_size;
app_sched_event_handler_t event_handler;
// Get next event (if any), and execute handler
while ((app_sched_event_get(&p_event_data, &event_data_size, &event_handler) == NRF_SUCCESS))
{
event_handler(p_event_data, event_data_size);
}
}