simmel-bootloader/src/boards.c

447 lines
13 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Ha Thach for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "boards.h"
#include "nrf_pwm.h"
#include "app_scheduler.h"
#include "app_timer.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define SCHED_MAX_EVENT_DATA_SIZE sizeof(app_timer_event_t) /**< Maximum size of scheduler events. */
#define SCHED_QUEUE_SIZE 30 /**< Maximum number of events in the scheduler queue. */
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN)
void neopixel_init(void);
void neopixel_write(uint8_t *pixels);
void neopixel_teardown(void);
#endif
//------------- IMPLEMENTATION -------------//
void button_init(uint32_t pin)
{
if ( BUTTON_PULL == NRF_GPIO_PIN_PULLDOWN )
{
nrf_gpio_cfg_sense_input(pin, BUTTON_PULL, NRF_GPIO_PIN_SENSE_HIGH);
}
else
{
nrf_gpio_cfg_sense_input(pin, BUTTON_PULL, NRF_GPIO_PIN_SENSE_LOW);
}
}
bool button_pressed(uint32_t pin)
{
uint32_t const active_state = (BUTTON_PULL == NRF_GPIO_PIN_PULLDOWN ? 1 : 0);
return nrf_gpio_pin_read(pin) == active_state;
}
void board_init(void)
{
// stop LF clock just in case we jump from application without reset
NRF_CLOCK->TASKS_LFCLKSTOP = 1UL;
// Use Internal OSC to compatible with all boards
NRF_CLOCK->LFCLKSRC = CLOCK_LFCLKSRC_SRC_RC;
NRF_CLOCK->TASKS_LFCLKSTART = 1UL;
button_init(BUTTON_DFU);
button_init(BUTTON_FRESET);
NRFX_DELAY_US(100); // wait for the pin state is stable
// use PMW0 for LED RED
led_pwm_init(LED_PRIMARY, LED_PRIMARY_PIN);
#if LEDS_NUMBER > 1
led_pwm_init(LED_SECONDARY, LED_SECONDARY_PIN);
#endif
// use neopixel for use enumeration
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN)
neopixel_init();
#endif
// Init scheduler
APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE);
// Init app timer (use RTC1)
app_timer_init();
// Configure Systick for led blinky
NVIC_SetPriority(SysTick_IRQn, 7);
SysTick_Config(SystemCoreClock/1000);
}
void board_teardown(void)
{
// Disable systick, turn off LEDs
SysTick->CTRL = 0;
// Disable and reset PWM for LEDs
led_pwm_teardown();
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN)
neopixel_teardown();
#endif
// Stop RTC1 used by app_timer
NVIC_DisableIRQ(RTC1_IRQn);
NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
NRF_RTC1->INTENCLR = RTC_INTENSET_COMPARE0_Msk;
NRF_RTC1->TASKS_STOP = 1;
NRF_RTC1->TASKS_CLEAR = 1;
// Stop LF clock
NRF_CLOCK->TASKS_LFCLKSTOP = 1UL;
// make sure all pins are back in reset state
// NUMBER_OF_PINS is defined in nrf_gpio.h
for (int i = 0; i < NUMBER_OF_PINS; ++i)
{
nrf_gpio_cfg_default(i);
}
}
static uint32_t _systick_count = 0;
void SysTick_Handler(void)
{
_systick_count++;
led_tick();
}
uint32_t tusb_hal_millis(void)
{
return ( ( ((uint64_t)app_timer_cnt_get())*1000*(APP_TIMER_CONFIG_RTC_FREQUENCY+1)) / APP_TIMER_CLOCK_FREQ );
}
void pwm_teardown(NRF_PWM_Type* pwm )
{
pwm->TASKS_SEQSTART[0] = 0;
pwm->ENABLE = 0;
pwm->PSEL.OUT[0] = 0xFFFFFFFF;
pwm->PSEL.OUT[1] = 0xFFFFFFFF;
pwm->PSEL.OUT[2] = 0xFFFFFFFF;
pwm->PSEL.OUT[3] = 0xFFFFFFFF;
pwm->MODE = 0;
pwm->COUNTERTOP = 0x3FF;
pwm->PRESCALER = 0;
pwm->DECODER = 0;
pwm->LOOP = 0;
pwm->SEQ[0].PTR = 0;
pwm->SEQ[0].CNT = 0;
}
static uint16_t led_duty_cycles[PWM0_CH_NUM] = { 0 };
#if LEDS_NUMBER > PWM0_CH_NUM
#error "Only " PWM0_CH_NUM " concurrent status LEDs are supported."
#endif
void led_pwm_init(uint32_t led_index, uint32_t led_pin)
{
NRF_PWM_Type* pwm = NRF_PWM0;
pwm->ENABLE = 0;
nrf_gpio_cfg_output(led_pin);
nrf_gpio_pin_write(led_pin, 1 - LED_STATE_ON);
pwm->PSEL.OUT[led_index] = led_pin;
pwm->MODE = PWM_MODE_UPDOWN_Up;
pwm->COUNTERTOP = 0xff;
pwm->PRESCALER = PWM_PRESCALER_PRESCALER_DIV_16;
pwm->DECODER = PWM_DECODER_LOAD_Individual;
pwm->LOOP = 0;
pwm->SEQ[0].PTR = (uint32_t) (led_duty_cycles);
pwm->SEQ[0].CNT = 4; // default mode is Individual --> count must be 4
pwm->SEQ[0].REFRESH = 0;
pwm->SEQ[0].ENDDELAY = 0;
pwm->ENABLE = 1;
pwm->EVENTS_SEQEND[0] = 0;
// pwm->TASKS_SEQSTART[0] = 1;
}
void led_pwm_teardown(void)
{
pwm_teardown(NRF_PWM0);
}
void led_pwm_duty_cycle(uint32_t led_index, uint16_t duty_cycle)
{
led_duty_cycles[led_index] = duty_cycle;
nrf_pwm_event_clear(NRF_PWM0, NRF_PWM_EVENT_SEQEND0);
nrf_pwm_task_trigger(NRF_PWM0, NRF_PWM_TASK_SEQSTART0);
}
static uint32_t primary_cycle_length;
#ifdef LED_SECONDARY_PIN
static uint32_t secondary_cycle_length;
#endif
void led_tick() {
uint32_t millis = _systick_count;
uint32_t cycle = millis % primary_cycle_length;
uint32_t half_cycle = primary_cycle_length / 2;
if (cycle > half_cycle) {
cycle = primary_cycle_length - cycle;
}
uint16_t duty_cycle = 0x4f * cycle / half_cycle;
#if LED_STATE_ON == 1
duty_cycle = 0xff - duty_cycle;
#endif
led_pwm_duty_cycle(LED_PRIMARY, duty_cycle);
#ifdef LED_SECONDARY_PIN
cycle = millis % secondary_cycle_length;
half_cycle = secondary_cycle_length / 2;
if (cycle > half_cycle) {
cycle = secondary_cycle_length - cycle;
}
duty_cycle = 0x8f * cycle / half_cycle;
#if LED_STATE_ON == 1
duty_cycle = 0xff - duty_cycle;
#endif
led_pwm_duty_cycle(LED_SECONDARY, duty_cycle);
#endif
}
static uint32_t rgb_color;
static bool temp_color_active = false;
void led_state(uint32_t state)
{
uint32_t new_rgb_color = rgb_color;
uint32_t temp_color = 0;
switch (state) {
case STATE_USB_MOUNTED:
new_rgb_color = 0x00ff00;
primary_cycle_length = 3000;
break;
case STATE_BOOTLOADER_STARTED:
case STATE_USB_UNMOUNTED:
new_rgb_color = 0xff0000;
primary_cycle_length = 300;
break;
case STATE_WRITING_STARTED:
temp_color = 0xff0000;
primary_cycle_length = 100;
break;
case STATE_WRITING_FINISHED:
// Empty means to unset any temp colors.
primary_cycle_length = 3000;
break;
case STATE_BLE_CONNECTED:
new_rgb_color = 0x0000ff;
#ifdef LED_SECONDARY_PIN
secondary_cycle_length = 3000;
#else
primary_cycle_length = 3000;
#endif
break;
case STATE_BLE_DISCONNECTED:
new_rgb_color = 0xff00ff;
#ifdef LED_SECONDARY_PIN
secondary_cycle_length = 300;
#else
primary_cycle_length = 300;
#endif
break;
default:
break;
}
uint8_t* final_color = NULL;
new_rgb_color &= BOARD_RGB_BRIGHTNESS;
if (temp_color != 0){
temp_color &= BOARD_RGB_BRIGHTNESS;
final_color = (uint8_t*)&temp_color;
temp_color_active = true;
} else if (new_rgb_color != rgb_color) {
final_color = (uint8_t*)&new_rgb_color;
rgb_color = new_rgb_color;
} else if (temp_color_active) {
final_color = (uint8_t*)&rgb_color;
}
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN)
if (final_color != NULL) {
neopixel_write(final_color);
}
#else
(void) final_color;
#endif
}
#ifdef LED_NEOPIXEL
// WS2812B (rev B) timing is 0.4 and 0.8 us
#define MAGIC_T0H 6UL | (0x8000) // 0.375us
#define MAGIC_T1H 13UL | (0x8000) // 0.8125us
#define CTOPVAL 20UL // 1.25us
#define BYTE_PER_PIXEL 3
static uint16_t pixels_pattern[NEOPIXELS_NUMBER*BYTE_PER_PIXEL * 8 + 2];
// use PWM1 for neopixel
void neopixel_init(void)
{
// To support both the SoftDevice + Neopixels we use the EasyDMA
// feature from the NRF25. However this technique implies to
// generate a pattern and store it on the memory. The actual
// memory used in bytes corresponds to the following formula:
// totalMem = numBytes*8*2+(2*2)
// The two additional bytes at the end are needed to reset the
// sequence.
NRF_PWM_Type* pwm = NRF_PWM1;
// Set the wave mode to count UP
// Set the PWM to use the 16MHz clock
// Setting of the maximum count
// but keeping it on 16Mhz allows for more granularity just
// in case someone wants to do more fine-tuning of the timing.
nrf_pwm_configure(pwm, NRF_PWM_CLK_16MHz, NRF_PWM_MODE_UP, CTOPVAL);
// Disable loops, we want the sequence to repeat only once
nrf_pwm_loop_set(pwm, 0);
// On the "Common" setting the PWM uses the same pattern for the
// for supported sequences. The pattern is stored on half-word of 16bits
nrf_pwm_decoder_set(pwm, PWM_DECODER_LOAD_Common, PWM_DECODER_MODE_RefreshCount);
// The following settings are ignored with the current config.
nrf_pwm_seq_refresh_set(pwm, 0, 0);
nrf_pwm_seq_end_delay_set(pwm, 0, 0);
// The Neopixel implementation is a blocking algorithm. DMA
// allows for non-blocking operation. To "simulate" a blocking
// operation we enable the interruption for the end of sequence
// and block the execution thread until the event flag is set by
// the peripheral.
// pwm->INTEN |= (PWM_INTEN_SEQEND0_Enabled<<PWM_INTEN_SEQEND0_Pos);
// PSEL must be configured before enabling PWM
nrf_pwm_pins_set(pwm, (uint32_t[] ) { LED_NEOPIXEL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL });
// Enable the PWM
nrf_pwm_enable(pwm);
}
void neopixel_teardown(void)
{
uint8_t rgb[3] = { 0, 0, 0 };
NRFX_DELAY_US(50); // wait for previous write is complete
neopixel_write(rgb);
NRFX_DELAY_US(50); // wait for this write
pwm_teardown(NRF_PWM1);
}
// write 3 bytes color RGB to built-in neopixel
void neopixel_write (uint8_t *pixels)
{
// convert RGB to GRB
uint8_t grb[BYTE_PER_PIXEL] = {pixels[1], pixels[2], pixels[0]};
uint16_t pos = 0; // bit position
// Set all neopixel to same value
for (uint16_t n = 0; n < NEOPIXELS_NUMBER; n++ )
{
for(uint8_t c = 0; c < BYTE_PER_PIXEL; c++)
{
uint8_t const pix = grb[c];
for ( uint8_t mask = 0x80; mask > 0; mask >>= 1 )
{
pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H : MAGIC_T0H;
pos++;
}
}
}
// Zero padding to indicate the end of sequence
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
NRF_PWM_Type* pwm = NRF_PWM1;
nrf_pwm_seq_ptr_set(pwm, 0, pixels_pattern);
nrf_pwm_seq_cnt_set(pwm, 0, sizeof(pixels_pattern)/2);
nrf_pwm_event_clear(pwm, NRF_PWM_EVENT_SEQEND0);
nrf_pwm_task_trigger(pwm, NRF_PWM_TASK_SEQSTART0);
// blocking wait for sequence complete
while( !nrf_pwm_event_check(pwm, NRF_PWM_EVENT_SEQEND0) ) {}
nrf_pwm_event_clear(pwm, NRF_PWM_EVENT_SEQEND0);
}
#endif
#if defined(LED_RGB_RED_PIN) && defined(LED_RGB_GREEN_PIN) && defined(LED_RGB_BLUE_PIN)
#ifdef LED_SECONDARY_PIN
#error "Cannot use secondary LED at the same time as an RGB status LED."
#endif
#define LED_RGB_RED 1
#define LED_RGB_BLUE 2
#define LED_RGB_GREEN 3
void neopixel_init(void)
{
led_pwm_init(LED_RGB_RED, LED_RGB_RED_PIN);
led_pwm_init(LED_RGB_GREEN, LED_RGB_GREEN_PIN);
led_pwm_init(LED_RGB_BLUE, LED_RGB_BLUE_PIN);
}
void neopixel_teardown(void)
{
uint8_t rgb[3] = { 0, 0, 0 };
neopixel_write(rgb);
nrf_gpio_cfg_default(LED_RGB_RED_PIN);
nrf_gpio_cfg_default(LED_RGB_GREEN_PIN);
nrf_gpio_cfg_default(LED_RGB_BLUE_PIN);
}
// write 3 bytes color to a built-in neopixel
void neopixel_write (uint8_t *pixels)
{
led_pwm_duty_cycle(LED_RGB_RED, pixels[2]);
led_pwm_duty_cycle(LED_RGB_GREEN, pixels[1]);
led_pwm_duty_cycle(LED_RGB_BLUE, pixels[0]);
}
#endif