simmel-bootloader/lib/sdk/components/drivers_nrf/timer/nrf_drv_timer.c
hathach df71d3444d follow #1
seperate files from latest SDK (currently 14.2.0) from good old non-
secure bootloader sdk 11
2018-04-05 00:35:08 +07:00

340 lines
12 KiB
C

/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(TIMER)
#define ENABLED_TIMER_COUNT (TIMER0_ENABLED+TIMER1_ENABLED+TIMER2_ENABLED+TIMER3_ENABLED+TIMER4_ENABLED)
#if ENABLED_TIMER_COUNT
#include "nrf_drv_timer.h"
#include "nrf_drv_common.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME timer
#if TIMER_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL TIMER_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR TIMER_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR TIMER_CONFIG_DEBUG_COLOR
#else //TIMER_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //TIMER_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
/**@brief Timer control block. */
typedef struct
{
nrf_timer_event_handler_t handler;
void * context;
nrf_drv_state_t state;
} timer_control_block_t;
static timer_control_block_t m_cb[ENABLED_TIMER_COUNT];
ret_code_t nrf_drv_timer_init(nrf_drv_timer_t const * const p_instance,
nrf_drv_timer_config_t const * p_config,
nrf_timer_event_handler_t timer_event_handler)
{
timer_control_block_t * p_cb = &m_cb[p_instance->instance_id];
ASSERT(((p_instance->p_reg == NRF_TIMER0) && TIMER0_ENABLED) || (p_instance->p_reg != NRF_TIMER0));
ASSERT(((p_instance->p_reg == NRF_TIMER1) && TIMER1_ENABLED) || (p_instance->p_reg != NRF_TIMER1));
ASSERT(((p_instance->p_reg == NRF_TIMER2) && TIMER2_ENABLED) || (p_instance->p_reg != NRF_TIMER2));
#if defined (NRF_TIMER3)
ASSERT(((p_instance->p_reg == NRF_TIMER3) && TIMER3_ENABLED) || (p_instance->p_reg != NRF_TIMER3));
#endif
#if defined (NRF_TIMER4)
ASSERT(((p_instance->p_reg == NRF_TIMER4) && TIMER4_ENABLED) || (p_instance->p_reg != NRF_TIMER4));
#endif
#ifdef SOFTDEVICE_PRESENT
ASSERT(p_instance->p_reg != NRF_TIMER0);
#endif
ASSERT(p_config);
ret_code_t err_code;
if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if (timer_event_handler == NULL)
{
err_code = NRF_ERROR_INVALID_PARAM;
NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
/* Warning 685: Relational operator '<=' always evaluates to 'true'"
* Warning in NRF_TIMER_IS_BIT_WIDTH_VALID macro. Macro validate timers resolution.
* Not necessary in nRF52 based systems. Obligatory in nRF51 based systems.
*/
/*lint -save -e685 */
ASSERT(NRF_TIMER_IS_BIT_WIDTH_VALID(p_instance->p_reg, p_config->bit_width));
//lint -restore
p_cb->handler = timer_event_handler;
p_cb->context = p_config->p_context;
uint8_t i;
for (i = 0; i < p_instance->cc_channel_count; ++i)
{
nrf_timer_event_clear(p_instance->p_reg,
nrf_timer_compare_event_get(i));
}
nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_reg),
p_config->interrupt_priority);
nrf_timer_mode_set(p_instance->p_reg, p_config->mode);
nrf_timer_bit_width_set(p_instance->p_reg, p_config->bit_width);
nrf_timer_frequency_set(p_instance->p_reg, p_config->frequency);
p_cb->state = NRF_DRV_STATE_INITIALIZED;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_timer_uninit(nrf_drv_timer_t const * const p_instance)
{
nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_reg));
#define DISABLE_ALL UINT32_MAX
nrf_timer_shorts_disable(p_instance->p_reg, DISABLE_ALL);
nrf_timer_int_disable(p_instance->p_reg, DISABLE_ALL);
#undef DISABLE_ALL
if (m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON)
{
nrf_drv_timer_disable(p_instance);
}
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Uninitialized instance: %d.", p_instance->instance_id);
}
void nrf_drv_timer_enable(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_START);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON;
NRF_LOG_INFO("Enabled instance: %d.", p_instance->instance_id);
}
void nrf_drv_timer_disable(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_SHUTDOWN);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
NRF_LOG_INFO("Disabled instance: %d.", p_instance->instance_id);
}
void nrf_drv_timer_resume(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_START);
NRF_LOG_INFO("Resumed instance: %d.", p_instance->instance_id);
}
void nrf_drv_timer_pause(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_STOP);
NRF_LOG_INFO("Paused instance: %d.", p_instance->instance_id);
}
void nrf_drv_timer_clear(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_CLEAR);
}
void nrf_drv_timer_increment(nrf_drv_timer_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON);
ASSERT(nrf_timer_mode_get(p_instance->p_reg) != NRF_TIMER_MODE_TIMER);
nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_COUNT);
}
uint32_t nrf_drv_timer_capture(nrf_drv_timer_t const * const p_instance,
nrf_timer_cc_channel_t cc_channel)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(cc_channel < p_instance->cc_channel_count);
nrf_timer_task_trigger(p_instance->p_reg,
nrf_timer_capture_task_get(cc_channel));
return nrf_timer_cc_read(p_instance->p_reg, cc_channel);
}
void nrf_drv_timer_compare(nrf_drv_timer_t const * const p_instance,
nrf_timer_cc_channel_t cc_channel,
uint32_t cc_value,
bool enable_int)
{
nrf_timer_int_mask_t timer_int = nrf_timer_compare_int_get(cc_channel);
if (enable_int)
{
nrf_timer_int_enable(p_instance->p_reg, timer_int);
}
else
{
nrf_timer_int_disable(p_instance->p_reg, timer_int);
}
nrf_timer_cc_write(p_instance->p_reg, cc_channel, cc_value);
NRF_LOG_INFO("Timer id: %d, capture value set: %d, channel: %d.", p_instance->instance_id, cc_value, cc_channel);
}
void nrf_drv_timer_extended_compare(nrf_drv_timer_t const * const p_instance,
nrf_timer_cc_channel_t cc_channel,
uint32_t cc_value,
nrf_timer_short_mask_t timer_short_mask,
bool enable_int)
{
nrf_timer_shorts_disable(p_instance->p_reg,
(TIMER_SHORTS_COMPARE0_STOP_Msk << cc_channel) |
(TIMER_SHORTS_COMPARE0_CLEAR_Msk << cc_channel));
nrf_timer_shorts_enable(p_instance->p_reg, timer_short_mask);
(void)nrf_drv_timer_compare(p_instance,
cc_channel,
cc_value,
enable_int);
NRF_LOG_INFO("Timer id: %d, capture value set: %d, channel: %d.", p_instance->instance_id, cc_value, cc_channel);
}
void nrf_drv_timer_compare_int_enable(nrf_drv_timer_t const * const p_instance,
uint32_t channel)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel < p_instance->cc_channel_count);
nrf_timer_event_clear(p_instance->p_reg,
nrf_timer_compare_event_get(channel));
nrf_timer_int_enable(p_instance->p_reg,
nrf_timer_compare_int_get(channel));
}
void nrf_drv_timer_compare_int_disable(nrf_drv_timer_t const * const p_instance,
uint32_t channel)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel < p_instance->cc_channel_count);
nrf_timer_int_disable(p_instance->p_reg,
nrf_timer_compare_int_get(channel));
}
static void irq_handler(NRF_TIMER_Type * p_reg,
timer_control_block_t * p_cb,
uint8_t channel_count)
{
uint8_t i;
for (i = 0; i < channel_count; ++i)
{
nrf_timer_event_t event = nrf_timer_compare_event_get(i);
nrf_timer_int_mask_t int_mask = nrf_timer_compare_int_get(i);
if (nrf_timer_event_check(p_reg, event) &&
nrf_timer_int_enable_check(p_reg, int_mask))
{
nrf_timer_event_clear(p_reg, event);
NRF_LOG_DEBUG("Compare event, channel: %d.", i);
p_cb->handler(event, p_cb->context);
}
}
}
#if NRF_MODULE_ENABLED(TIMER0)
void TIMER0_IRQHandler(void)
{
irq_handler(NRF_TIMER0, &m_cb[TIMER0_INSTANCE_INDEX],
NRF_TIMER_CC_CHANNEL_COUNT(0));
}
#endif
#if NRF_MODULE_ENABLED(TIMER1)
void TIMER1_IRQHandler(void)
{
irq_handler(NRF_TIMER1, &m_cb[TIMER1_INSTANCE_INDEX],
NRF_TIMER_CC_CHANNEL_COUNT(1));
}
#endif
#if NRF_MODULE_ENABLED(TIMER2)
void TIMER2_IRQHandler(void)
{
irq_handler(NRF_TIMER2, &m_cb[TIMER2_INSTANCE_INDEX],
NRF_TIMER_CC_CHANNEL_COUNT(2));
}
#endif
#if defined (NRF_TIMER3)
#if NRF_MODULE_ENABLED(TIMER3)
void TIMER3_IRQHandler(void)
{
irq_handler(NRF_TIMER3, &m_cb[TIMER3_INSTANCE_INDEX],
NRF_TIMER_CC_CHANNEL_COUNT(3));
}
#endif
#endif
#if defined (NRF_TIMER4)
#if NRF_MODULE_ENABLED(TIMER4)
void TIMER4_IRQHandler(void)
{
irq_handler(NRF_TIMER4, &m_cb[TIMER4_INSTANCE_INDEX],
NRF_TIMER_CC_CHANNEL_COUNT(4));
}
#endif
#endif
#endif // ENABLED_TIMER_COUNT
#endif // NRF_MODULE_ENABLED(TIMER)