simmel-bootloader/lib/sdk11/components/libraries/bootloader_dfu/dfu_single_bank.c

817 lines
27 KiB
C

/* Copyright (c) 2013 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include <stddef.h>
#include "dfu.h"
#include <dfu_types.h>
#include "dfu_bank_internal.h"
#include "nrf.h"
#include "nrf_sdm.h"
#include "app_error.h"
#include "app_timer.h"
#include "bootloader.h"
#include "bootloader_types.h"
#include "pstorage.h"
#include "nrf_mbr.h"
#include "dfu_init.h"
#include "sdk_common.h"
#include "boards.h"
static dfu_state_t m_dfu_state; /**< Current DFU state. */
static uint32_t m_image_size; /**< Size of the image that will be transmitted. */
static dfu_start_packet_t m_start_packet; /**< Start packet received for this update procedure. Contains update mode and image sizes information to be used for image transfer. */
static uint8_t m_init_packet[64]; /**< Init packet, can hold CRC, Hash, Signed Hash and similar, for image validation, integrety check and authorization checking. */
static uint8_t m_init_packet_length; /**< Length of init packet received. */
static uint16_t m_image_crc; /**< Calculated CRC of the image received. */
APP_TIMER_DEF(m_dfu_timer_id); /**< Application timer id. */
static bool m_dfu_timed_out = false; /**< Boolean flag value for tracking DFU timer timeout state. */
static pstorage_handle_t m_storage_handle_app; /**< Pstorage handle for the application area (bank 0). Bank used when updating a SoftDevice w/wo bootloader. Handle also used when swapping received application from bank 1 to bank 0. */
static pstorage_handle_t * mp_storage_handle_active; /**< Pointer to the pstorage handle for the active bank for receiving of data packets. */
static dfu_callback_t m_data_pkt_cb; /**< Callback from DFU Bank module for notification of asynchronous operation such as flash prepare. */
static dfu_bank_func_t m_functions; /**< Structure holding operations for the selected update process. */
/**@brief Function for handling callbacks from pstorage module.
*
* @details Handles pstorage results for clear and storage operation. For detailed description of
* the parameters provided with the callback, please refer to \ref pstorage_ntf_cb_t.
*/
static void pstorage_callback_handler(pstorage_handle_t * p_handle,
uint8_t op_code,
uint32_t result,
uint8_t * p_data,
uint32_t data_len)
{
switch (op_code)
{
case PSTORAGE_STORE_OP_CODE:
if ((m_dfu_state == DFU_STATE_RX_DATA_PKT) && (m_data_pkt_cb != NULL))
{
m_data_pkt_cb(DATA_PACKET, result, p_data);
}
break;
case PSTORAGE_CLEAR_OP_CODE:
if (m_dfu_state == DFU_STATE_PREPARING)
{
m_functions.cleared();
m_dfu_state = DFU_STATE_RDY;
if (m_data_pkt_cb != NULL)
{
m_data_pkt_cb(START_PACKET, result, p_data);
}
}
break;
default:
break;
}
APP_ERROR_CHECK(result);
}
/**@brief Function for handling the DFU timeout.
*
* @param[in] p_context The timeout context.
*/
static void dfu_timeout_handler(void * p_context)
{
UNUSED_PARAMETER(p_context);
dfu_update_status_t update_status;
m_dfu_timed_out = true;
update_status.status_code = DFU_TIMEOUT;
bootloader_dfu_update_process(update_status);
}
/**@brief Function for restarting the DFU Timer.
*
* @details This function will stop and restart the DFU timer. This function will be called by the
* functions handling any DFU packet received from the peer that is transferring a firmware
* image.
*/
static uint32_t dfu_timer_restart(void)
{
if (m_dfu_timed_out)
{
// The DFU timer had already timed out.
return NRF_ERROR_INVALID_STATE;
}
uint32_t err_code = app_timer_stop(m_dfu_timer_id);
APP_ERROR_CHECK(err_code);
err_code = app_timer_start(m_dfu_timer_id, DFU_TIMEOUT_INTERVAL, NULL);
APP_ERROR_CHECK(err_code);
return err_code;
}
/**@brief Function for preparing of flash before receiving SoftDevice image.
*
* @details This function will erase current application area to ensure sufficient amount of
* storage for the SoftDevice image. Upon erase complete a callback will be done.
* See \ref dfu_bank_prepare_t for further details.
*/
static void dfu_prepare_func_app_erase(uint32_t image_size)
{
mp_storage_handle_active = &m_storage_handle_app;
// Doing a SoftDevice update thus current application must be cleared to ensure enough space
// for new SoftDevice.
m_dfu_state = DFU_STATE_PREPARING;
if ( is_ota() )
{
uint32_t err_code;
err_code = pstorage_clear(&m_storage_handle_app, m_image_size);
APP_ERROR_CHECK(err_code);
}
else
{
uint32_t page_count = m_image_size / CODE_PAGE_SIZE;
if ( m_image_size % CODE_PAGE_SIZE ) page_count++;
for ( uint32_t i = 0; i < page_count; i++ )
{
nrfx_nvmc_page_erase(DFU_BANK_0_REGION_START + i * CODE_PAGE_SIZE);
}
// invoke complete callback
pstorage_callback_handler(&m_storage_handle_app, PSTORAGE_CLEAR_OP_CODE, NRF_SUCCESS, NULL, 0);
}
}
/**@brief Function for handling behaviour when clear operation has completed.
*/
static void dfu_cleared_func_app(void)
{
dfu_update_status_t update_status = {DFU_BANK_0_ERASED, };
bootloader_dfu_update_process(update_status);
}
/**@brief Function for calculating storage offset for receiving SoftDevice image.
*
* @details When a new SoftDevice is received it will be temporary stored in flash before moved to
* address 0x0. In order to succesfully validate transfer and relocation it is important
* that temporary image and final installed image does not ovwerlap hence an offset must
* be calculated in case new image is larger than currently installed SoftDevice.
*/
uint32_t offset_calculate(uint32_t sd_image_size)
{
uint32_t offset = 0;
if (m_start_packet.sd_image_size > DFU_BANK_0_REGION_START)
{
uint32_t page_mask = (CODE_PAGE_SIZE - 1);
uint32_t diff = m_start_packet.sd_image_size - DFU_BANK_0_REGION_START;
offset = diff & ~page_mask;
// Align offset to next page if image size is not page sized.
if ((diff & page_mask) > 0)
{
offset += CODE_PAGE_SIZE;
}
}
return offset;
}
/**@brief Function for activating received SoftDevice image.
*
* @note This function will not move the SoftDevice image.
* The bootloader settings will be marked as SoftDevice update complete and the swapping of
* current SoftDevice will occur after system reset.
*
* @return NRF_SUCCESS on success.
*/
static uint32_t dfu_activate_sd(void)
{
dfu_update_status_t update_status;
update_status.status_code = DFU_UPDATE_SD_COMPLETE;
update_status.app_crc = m_image_crc;
update_status.sd_image_start = DFU_BANK_0_REGION_START;
update_status.sd_size = m_start_packet.sd_image_size;
update_status.bl_size = m_start_packet.bl_image_size;
update_status.app_size = m_start_packet.app_image_size;
bootloader_dfu_update_process(update_status);
return NRF_SUCCESS;
}
/**@brief Function for activating received Application image.
*
* @details This function will move the received application image fram swap (bank 1) to
* application area (bank 0).
*
* @return NRF_SUCCESS on success. Error code otherwise.
*/
static uint32_t dfu_activate_app(void)
{
uint32_t err_code = NRF_SUCCESS;
dfu_update_status_t update_status;
memset(&update_status, 0, sizeof(dfu_update_status_t ));
update_status.status_code = DFU_UPDATE_APP_COMPLETE;
update_status.app_crc = m_image_crc;
update_status.app_size = m_start_packet.app_image_size;
bootloader_dfu_update_process(update_status);
return err_code;
}
/**@brief Function for activating received Bootloader image.
*
* @note This function will not move the bootloader image.
* The bootloader settings will be marked as Bootloader update complete and the swapping of
* current bootloader will occur after system reset.
*
* @return NRF_SUCCESS on success.
*/
static uint32_t dfu_activate_bl(void)
{
dfu_update_status_t update_status;
update_status.status_code = DFU_UPDATE_BOOT_COMPLETE;
update_status.app_crc = m_image_crc;
update_status.sd_size = m_start_packet.sd_image_size;
update_status.bl_size = m_start_packet.bl_image_size;
update_status.app_size = m_start_packet.app_image_size;
bootloader_dfu_update_process(update_status);
return NRF_SUCCESS;
}
uint32_t dfu_init(void)
{
uint32_t err_code;
pstorage_module_param_t storage_module_param = {.cb = pstorage_callback_handler};
m_init_packet_length = 0;
m_image_crc = 0;
err_code = pstorage_register(&storage_module_param, &m_storage_handle_app);
if (err_code != NRF_SUCCESS)
{
m_dfu_state = DFU_STATE_INIT_ERROR;
return err_code;
}
m_storage_handle_app.block_id = DFU_BANK_0_REGION_START;
// Create the timer to monitor the activity by the peer doing the firmware update.
err_code = app_timer_create(&m_dfu_timer_id,
APP_TIMER_MODE_SINGLE_SHOT,
dfu_timeout_handler);
APP_ERROR_CHECK(err_code);
// Start the DFU timer.
err_code = app_timer_start(m_dfu_timer_id, DFU_TIMEOUT_INTERVAL, NULL);
APP_ERROR_CHECK(err_code);
m_data_received = 0;
m_dfu_state = DFU_STATE_IDLE;
return NRF_SUCCESS;
}
void dfu_register_callback(dfu_callback_t callback_handler)
{
m_data_pkt_cb = callback_handler;
}
uint32_t dfu_start_pkt_handle(dfu_update_packet_t * p_packet)
{
uint32_t err_code;
m_start_packet = *(p_packet->params.start_packet);
// Check that the requested update procedure is supported.
// Currently the following combinations are allowed:
// - Application
// - SoftDevice
// - Bootloader
// - SoftDevice with Bootloader
if (IS_UPDATING_APP(m_start_packet) &&
(IS_UPDATING_SD(m_start_packet) || IS_UPDATING_BL(m_start_packet)))
{
// App update is only supported independently.
return NRF_ERROR_NOT_SUPPORTED;
}
if (!(IS_WORD_SIZED(m_start_packet.sd_image_size) &&
IS_WORD_SIZED(m_start_packet.bl_image_size) &&
IS_WORD_SIZED(m_start_packet.app_image_size)))
{
// Image_sizes are not a multiple of 4 (word size).
return NRF_ERROR_NOT_SUPPORTED;
}
m_image_size = m_start_packet.sd_image_size + m_start_packet.bl_image_size +
m_start_packet.app_image_size;
if (m_start_packet.bl_image_size > DFU_BL_IMAGE_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
if (m_image_size > (DFU_IMAGE_MAX_SIZE_FULL))
{
return NRF_ERROR_DATA_SIZE;
}
m_functions.prepare = dfu_prepare_func_app_erase;
m_functions.cleared = dfu_cleared_func_app;
if (IS_UPDATING_SD(m_start_packet))
{
m_functions.activate = dfu_activate_sd;
}
else if (IS_UPDATING_BL(m_start_packet))
{
m_functions.activate = dfu_activate_bl;
}
else
{
m_functions.activate = dfu_activate_app;
}
switch (m_dfu_state)
{
case DFU_STATE_IDLE:
// Valid peer activity detected. Hence restart the DFU timer.
err_code = dfu_timer_restart();
VERIFY_SUCCESS(err_code);
m_functions.prepare(m_image_size);
break;
default:
err_code = NRF_ERROR_INVALID_STATE;
break;
}
return err_code;
}
uint32_t dfu_data_pkt_handle(dfu_update_packet_t * p_packet)
{
uint32_t data_length;
uint32_t err_code;
uint32_t * p_data;
VERIFY_PARAM_NOT_NULL(p_packet);
// Check pointer alignment.
if (!is_word_aligned(p_packet->params.data_packet.p_data_packet))
{
// The p_data_packet is not word aligned address.
return NRF_ERROR_INVALID_ADDR;
}
switch (m_dfu_state)
{
case DFU_STATE_RDY:
case DFU_STATE_RX_INIT_PKT:
return NRF_ERROR_INVALID_STATE;
case DFU_STATE_RX_DATA_PKT:
data_length = p_packet->params.data_packet.packet_length * sizeof(uint32_t);
if ((m_data_received + data_length) > m_image_size)
{
// The caller is trying to write more bytes into the flash than the size provided to
// the dfu_image_size_set function. This is treated as a serious error condition and
// an unrecoverable one. Hence point the variable mp_app_write_address to the top of
// the flash area. This will ensure that all future application data packet writes
// will be blocked because of the above check.
m_data_received = 0xFFFFFFFF;
return NRF_ERROR_DATA_SIZE;
}
// Valid peer activity detected. Hence restart the DFU timer.
err_code = dfu_timer_restart();
VERIFY_SUCCESS(err_code);
p_data = (uint32_t *)p_packet->params.data_packet.p_data_packet;
if ( is_ota() )
{
err_code = pstorage_store(mp_storage_handle_active, (uint8_t *)p_data, data_length, m_data_received);
VERIFY_SUCCESS(err_code);
}
else
{
flash_nrf5x_write(DFU_BANK_0_REGION_START + m_data_received, p_data, data_length, false);
pstorage_callback_handler(mp_storage_handle_active, PSTORAGE_STORE_OP_CODE, NRF_SUCCESS, (uint8_t *) p_data, data_length);
}
m_data_received += data_length;
if (m_data_received != m_image_size)
{
// The entire image is not received yet. More data is expected.
err_code = NRF_ERROR_INVALID_LENGTH;
}
else
{
if ( !is_ota() ) flash_nrf5x_flush(false);
// The entire image has been received. Return NRF_SUCCESS.
err_code = NRF_SUCCESS;
}
break;
default:
err_code = NRF_ERROR_INVALID_STATE;
break;
}
return err_code;
}
uint32_t dfu_init_pkt_complete(void)
{
uint32_t err_code = NRF_ERROR_INVALID_STATE;
// DFU initialization has been done and a start packet has been received.
if (IMAGE_WRITE_IN_PROGRESS())
{
// Image write is already in progress. Cannot handle an init packet now.
return NRF_ERROR_INVALID_STATE;
}
if (m_dfu_state == DFU_STATE_RX_INIT_PKT)
{
err_code = dfu_init_prevalidate(m_init_packet, m_init_packet_length, m_start_packet.dfu_update_mode);
if (err_code == NRF_SUCCESS)
{
m_dfu_state = DFU_STATE_RX_DATA_PKT;
}
else
{
m_init_packet_length = 0;
}
}
return err_code;
}
uint32_t dfu_init_pkt_handle(dfu_update_packet_t * p_packet)
{
uint32_t err_code = NRF_SUCCESS;
uint32_t length;
switch (m_dfu_state)
{
case DFU_STATE_RDY:
m_dfu_state = DFU_STATE_RX_INIT_PKT;
// When receiving init packet in state ready just update and fall through this case.
case DFU_STATE_RX_INIT_PKT:
// DFU initialization has been done and a start packet has been received.
if (IMAGE_WRITE_IN_PROGRESS())
{
// Image write is already in progress. Cannot handle an init packet now.
return NRF_ERROR_INVALID_STATE;
}
// Valid peer activity detected. Hence restart the DFU timer.
err_code = dfu_timer_restart();
VERIFY_SUCCESS(err_code);
length = p_packet->params.data_packet.packet_length * sizeof(uint32_t);
if ((m_init_packet_length + length) > sizeof(m_init_packet))
{
return NRF_ERROR_INVALID_LENGTH;
}
memcpy(&m_init_packet[m_init_packet_length],
&p_packet->params.data_packet.p_data_packet[0],
length);
m_init_packet_length += length;
break;
default:
// Either the start packet was not received or dfu_init function was not called before.
err_code = NRF_ERROR_INVALID_STATE;
break;
}
return err_code;
}
uint32_t dfu_image_validate()
{
uint32_t err_code;
switch (m_dfu_state)
{
case DFU_STATE_RX_DATA_PKT:
// Check if the application image write has finished.
if (m_data_received != m_image_size)
{
// Image not yet fully transfered by the peer or the peer has attempted to write
// too much data. Hence the validation should fail.
err_code = NRF_ERROR_INVALID_STATE;
}
else
{
m_dfu_state = DFU_STATE_VALIDATE;
// Valid peer activity detected. Hence restart the DFU timer.
err_code = dfu_timer_restart();
if (err_code == NRF_SUCCESS)
{
err_code = dfu_init_postvalidate((uint8_t *)mp_storage_handle_active->block_id,
m_image_size);
VERIFY_SUCCESS(err_code);
m_dfu_state = DFU_STATE_WAIT_4_ACTIVATE;
}
}
break;
default:
err_code = NRF_ERROR_INVALID_STATE;
break;
}
return err_code;
}
uint32_t dfu_image_activate()
{
uint32_t err_code;
switch (m_dfu_state)
{
case DFU_STATE_WAIT_4_ACTIVATE:
// Stop the DFU Timer because the peer activity need not be monitored any longer.
err_code = app_timer_stop(m_dfu_timer_id);
APP_ERROR_CHECK(err_code);
err_code = m_functions.activate();
break;
default:
err_code = NRF_ERROR_INVALID_STATE;
break;
}
return err_code;
}
void dfu_reset(void)
{
dfu_update_status_t update_status;
update_status.status_code = DFU_RESET;
bootloader_dfu_update_process(update_status);
}
static uint32_t dfu_compare_block(uint32_t * ptr1, uint32_t * ptr2, uint32_t len)
{
sd_mbr_command_t sd_mbr_cmd;
sd_mbr_cmd.command = SD_MBR_COMMAND_COMPARE;
sd_mbr_cmd.params.compare.ptr1 = ptr1;
sd_mbr_cmd.params.compare.ptr2 = ptr2;
sd_mbr_cmd.params.compare.len = len / sizeof(uint32_t);
return sd_mbr_command(&sd_mbr_cmd);
}
static uint32_t dfu_copy_sd(uint32_t * src, uint32_t * dst, uint32_t len)
{
sd_mbr_command_t sd_mbr_cmd;
sd_mbr_cmd.command = SD_MBR_COMMAND_COPY_SD;
sd_mbr_cmd.params.copy_sd.src = src;
sd_mbr_cmd.params.copy_sd.dst = dst;
sd_mbr_cmd.params.copy_sd.len = len / sizeof(uint32_t);
return sd_mbr_command(&sd_mbr_cmd);
}
static uint32_t dfu_sd_img_block_swap(uint32_t * src,
uint32_t * dst,
uint32_t len,
uint32_t block_size)
{
// It is neccesarry to swap the new SoftDevice in 3 rounds to ensure correct copy of data
// and verifucation of data in case power reset occurs during write to flash.
// To ensure the robustness of swapping the images are compared backwards till start of
// image swap. If the back is identical everything is swapped.
uint32_t err_code = dfu_compare_block(src, dst, len);
if (err_code == NRF_SUCCESS)
{
return err_code;
}
if ((uint32_t)dst > SOFTDEVICE_REGION_START)
{
err_code = dfu_sd_img_block_swap((uint32_t *)((uint32_t)src - block_size),
(uint32_t *)((uint32_t)dst - block_size),
block_size,
block_size);
VERIFY_SUCCESS(err_code);
}
err_code = dfu_copy_sd(src, dst, len);
VERIFY_SUCCESS(err_code);
return dfu_compare_block(src, dst, len);
}
uint32_t dfu_sd_image_swap(void)
{
bootloader_settings_t boot_settings;
bootloader_settings_get(&boot_settings);
if (boot_settings.sd_image_size == 0)
{
return NRF_SUCCESS;
}
if ((SOFTDEVICE_REGION_START + boot_settings.sd_image_size) > boot_settings.sd_image_start)
{
uint32_t err_code;
uint32_t sd_start = SOFTDEVICE_REGION_START;
uint32_t block_size = (boot_settings.sd_image_start - sd_start) / 2;
/* ##### FIX START ##### */
block_size &= ~(uint32_t)(CODE_PAGE_SIZE - 1);
/* ##### FIX END ##### */
uint32_t image_end = boot_settings.sd_image_start + boot_settings.sd_image_size;
uint32_t img_block_start = boot_settings.sd_image_start + 2 * block_size;
uint32_t sd_block_start = sd_start + 2 * block_size;
if (SD_SIZE_GET(MBR_SIZE) < boot_settings.sd_image_size)
{
// This will clear a page thus ensuring the old image is invalidated before swapping.
err_code = dfu_copy_sd((uint32_t *)(sd_start + block_size),
(uint32_t *)(sd_start + block_size),
sizeof(uint32_t));
VERIFY_SUCCESS(err_code);
err_code = dfu_copy_sd((uint32_t *)sd_start, (uint32_t *)sd_start, sizeof(uint32_t));
VERIFY_SUCCESS(err_code);
}
return dfu_sd_img_block_swap((uint32_t *)img_block_start,
(uint32_t *)sd_block_start,
image_end - img_block_start,
block_size);
}
else
{
if (boot_settings.sd_image_size != 0)
{
return dfu_copy_sd((uint32_t *)boot_settings.sd_image_start,
(uint32_t *)SOFTDEVICE_REGION_START,
boot_settings.sd_image_size);
}
}
return NRF_SUCCESS;
}
uint32_t dfu_bl_image_swap(void)
{
bootloader_settings_t bootloader_settings;
sd_mbr_command_t sd_mbr_cmd;
bootloader_settings_get(&bootloader_settings);
if (bootloader_settings.bl_image_size != 0)
{
uint32_t bl_image_start = (bootloader_settings.sd_image_size == 0) ?
DFU_BANK_0_REGION_START :
bootloader_settings.sd_image_start +
bootloader_settings.sd_image_size;
sd_mbr_cmd.command = SD_MBR_COMMAND_COPY_BL;
sd_mbr_cmd.params.copy_bl.bl_src = (uint32_t *)(bl_image_start);
sd_mbr_cmd.params.copy_bl.bl_len = bootloader_settings.bl_image_size / sizeof(uint32_t);
return sd_mbr_command(&sd_mbr_cmd);
}
return NRF_SUCCESS;
}
uint32_t dfu_bl_image_validate(void)
{
bootloader_settings_t bootloader_settings;
sd_mbr_command_t sd_mbr_cmd;
bootloader_settings_get(&bootloader_settings);
if (bootloader_settings.bl_image_size != 0)
{
uint32_t bl_image_start = (bootloader_settings.sd_image_size == 0) ?
DFU_BANK_0_REGION_START :
bootloader_settings.sd_image_start +
bootloader_settings.sd_image_size;
sd_mbr_cmd.command = SD_MBR_COMMAND_COMPARE;
sd_mbr_cmd.params.compare.ptr1 = (uint32_t *)BOOTLOADER_REGION_START;
sd_mbr_cmd.params.compare.ptr2 = (uint32_t *)(bl_image_start);
sd_mbr_cmd.params.compare.len = bootloader_settings.bl_image_size / sizeof(uint32_t);
return sd_mbr_command(&sd_mbr_cmd);
}
return NRF_SUCCESS;
}
uint32_t dfu_sd_image_validate(void)
{
bootloader_settings_t bootloader_settings;
sd_mbr_command_t sd_mbr_cmd;
bootloader_settings_get(&bootloader_settings);
if (bootloader_settings.sd_image_size == 0)
{
return NRF_SUCCESS;
}
if ((SOFTDEVICE_REGION_START + bootloader_settings.sd_image_size) > bootloader_settings.sd_image_start)
{
uint32_t sd_start = SOFTDEVICE_REGION_START;
uint32_t block_size = (bootloader_settings.sd_image_start - sd_start) / 2;
uint32_t image_end = bootloader_settings.sd_image_start +
bootloader_settings.sd_image_size;
/* ##### FIX START ##### */
block_size &= ~(uint32_t)(CODE_PAGE_SIZE - 1);
/* ##### FIX END ##### */
uint32_t img_block_start = bootloader_settings.sd_image_start + 2 * block_size;
uint32_t sd_block_start = sd_start + 2 * block_size;
if (SD_SIZE_GET(MBR_SIZE) < bootloader_settings.sd_image_size)
{
return NRF_ERROR_NULL;
}
return dfu_sd_img_block_swap((uint32_t *)img_block_start,
(uint32_t *)sd_block_start,
image_end - img_block_start,
block_size);
}
sd_mbr_cmd.command = SD_MBR_COMMAND_COMPARE;
sd_mbr_cmd.params.compare.ptr1 = (uint32_t *)SOFTDEVICE_REGION_START;
sd_mbr_cmd.params.compare.ptr2 = (uint32_t *)bootloader_settings.sd_image_start;
sd_mbr_cmd.params.compare.len = bootloader_settings.sd_image_size / sizeof(uint32_t);
return sd_mbr_command(&sd_mbr_cmd);
}