df71d3444d
seperate files from latest SDK (currently 14.2.0) from good old non- secure bootloader sdk 11
991 lines
33 KiB
C
991 lines
33 KiB
C
/**
|
|
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include "sdk_common.h"
|
|
#if NRF_MODULE_ENABLED(UART)
|
|
#include "nrf_drv_uart.h"
|
|
#include "nrf_assert.h"
|
|
#include "nrf_drv_common.h"
|
|
#include "nrf_gpio.h"
|
|
#include "app_util_platform.h"
|
|
|
|
#define NRF_LOG_MODULE_NAME uart
|
|
|
|
#if UART_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL UART_CONFIG_LOG_LEVEL
|
|
#define NRF_LOG_INFO_COLOR UART_CONFIG_INFO_COLOR
|
|
#define NRF_LOG_DEBUG_COLOR UART_CONFIG_DEBUG_COLOR
|
|
#define EVT_TO_STR(event) (event == NRF_UART_EVENT_ERROR ? "NRF_UART_EVENT_ERROR" : "UNKNOWN EVENT")
|
|
#else //UART_CONFIG_LOG_ENABLED
|
|
#define EVT_TO_STR(event) ""
|
|
#define NRF_LOG_LEVEL 0
|
|
#endif //UART_CONFIG_LOG_ENABLED
|
|
#include "nrf_log.h"
|
|
NRF_LOG_MODULE_REGISTER();
|
|
|
|
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
|
|
// UARTE and UART combined
|
|
#define CODE_FOR_UARTE(code) if (m_cb[p_instance->drv_inst_idx].use_easy_dma) { code }
|
|
#define CODE_FOR_UARTE_INT(idx, code) if (m_cb[idx].use_easy_dma) { code }
|
|
#define CODE_FOR_UART(code) else { code }
|
|
#elif (defined(UARTE_IN_USE) && !defined(UART_IN_USE))
|
|
// UARTE only
|
|
#define CODE_FOR_UARTE(code) { code }
|
|
#define CODE_FOR_UARTE_INT(idx, code) { code }
|
|
#define CODE_FOR_UART(code)
|
|
#elif (!defined(UARTE_IN_USE) && defined(UART_IN_USE))
|
|
// UART only
|
|
#define CODE_FOR_UARTE(code)
|
|
#define CODE_FOR_UARTE_INT(idx, code)
|
|
#define CODE_FOR_UART(code) { code }
|
|
#else
|
|
#error "Wrong configuration."
|
|
#endif
|
|
|
|
#define TX_COUNTER_ABORT_REQ_VALUE 256
|
|
|
|
typedef struct
|
|
{
|
|
void * p_context;
|
|
nrf_uart_event_handler_t handler;
|
|
uint8_t const * p_tx_buffer;
|
|
uint8_t * p_rx_buffer;
|
|
uint8_t * p_rx_secondary_buffer;
|
|
volatile uint16_t tx_counter;
|
|
uint8_t tx_buffer_length;
|
|
uint8_t rx_buffer_length;
|
|
uint8_t rx_secondary_buffer_length;
|
|
volatile uint8_t rx_counter;
|
|
bool rx_enabled;
|
|
nrf_drv_state_t state;
|
|
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
|
|
bool use_easy_dma;
|
|
#endif
|
|
} uart_control_block_t;
|
|
|
|
static uart_control_block_t m_cb[UART_ENABLED_COUNT];
|
|
|
|
#ifdef NRF52810_XXAA
|
|
#define IRQ_HANDLER(n) void UARTE##n##_IRQHandler(void)
|
|
#else
|
|
#define IRQ_HANDLER(n) void UART##n##_IRQHandler(void)
|
|
#endif
|
|
|
|
__STATIC_INLINE void apply_config(nrf_drv_uart_t const * p_instance, nrf_drv_uart_config_t const * p_config)
|
|
{
|
|
if (p_config->pseltxd != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_pin_set(p_config->pseltxd);
|
|
nrf_gpio_cfg_output(p_config->pseltxd);
|
|
}
|
|
if (p_config->pselrxd != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_input(p_config->pselrxd, NRF_GPIO_PIN_NOPULL);
|
|
}
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_baudrate_set(p_instance->reg.p_uarte, (nrf_uarte_baudrate_t)p_config->baudrate);
|
|
nrf_uarte_configure(p_instance->reg.p_uarte, (nrf_uarte_parity_t)p_config->parity,
|
|
(nrf_uarte_hwfc_t)p_config->hwfc);
|
|
nrf_uarte_txrx_pins_set(p_instance->reg.p_uarte, p_config->pseltxd, p_config->pselrxd);
|
|
if (p_config->hwfc == NRF_UART_HWFC_ENABLED)
|
|
{
|
|
if (p_config->pselcts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_input(p_config->pselcts, NRF_GPIO_PIN_NOPULL);
|
|
}
|
|
if (p_config->pselrts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_pin_set(p_config->pselrts);
|
|
nrf_gpio_cfg_output(p_config->pselrts);
|
|
}
|
|
nrf_uarte_hwfc_pins_set(p_instance->reg.p_uarte, p_config->pselrts, p_config->pselcts);
|
|
}
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_baudrate_set(p_instance->reg.p_uart, p_config->baudrate);
|
|
nrf_uart_configure(p_instance->reg.p_uart, p_config->parity, p_config->hwfc);
|
|
nrf_uart_txrx_pins_set(p_instance->reg.p_uart, p_config->pseltxd, p_config->pselrxd);
|
|
if (p_config->hwfc == NRF_UART_HWFC_ENABLED)
|
|
{
|
|
if (p_config->pselcts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_input(p_config->pselcts, NRF_GPIO_PIN_NOPULL);
|
|
}
|
|
if (p_config->pselrts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_pin_set(p_config->pselrts);
|
|
nrf_gpio_cfg_output(p_config->pselrts);
|
|
}
|
|
nrf_uart_hwfc_pins_set(p_instance->reg.p_uart, p_config->pselrts, p_config->pselcts);
|
|
}
|
|
)
|
|
}
|
|
|
|
__STATIC_INLINE void interrupts_enable(const nrf_drv_uart_t * p_instance, uint8_t interrupt_priority)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
|
|
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ENDRX_MASK |
|
|
NRF_UARTE_INT_ENDTX_MASK |
|
|
NRF_UARTE_INT_ERROR_MASK |
|
|
NRF_UARTE_INT_RXTO_MASK);
|
|
nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uarte), interrupt_priority);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY);
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
|
|
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_TXDRDY |
|
|
NRF_UART_INT_MASK_RXTO);
|
|
nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uart), interrupt_priority);
|
|
)
|
|
}
|
|
|
|
__STATIC_INLINE void interrupts_disable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_int_disable(p_instance->reg.p_uarte, NRF_UARTE_INT_ENDRX_MASK |
|
|
NRF_UARTE_INT_ENDTX_MASK |
|
|
NRF_UARTE_INT_ERROR_MASK |
|
|
NRF_UARTE_INT_RXTO_MASK);
|
|
nrf_drv_common_irq_disable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uarte));
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY |
|
|
NRF_UART_INT_MASK_TXDRDY |
|
|
NRF_UART_INT_MASK_ERROR |
|
|
NRF_UART_INT_MASK_RXTO);
|
|
nrf_drv_common_irq_disable(nrf_drv_get_IRQn((void *)p_instance->reg.p_uart));
|
|
)
|
|
|
|
}
|
|
|
|
__STATIC_INLINE void pins_to_default(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
/* Reset pins to default states */
|
|
uint32_t txd;
|
|
uint32_t rxd;
|
|
uint32_t rts;
|
|
uint32_t cts;
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
txd = nrf_uarte_tx_pin_get(p_instance->reg.p_uarte);
|
|
rxd = nrf_uarte_rx_pin_get(p_instance->reg.p_uarte);
|
|
rts = nrf_uarte_rts_pin_get(p_instance->reg.p_uarte);
|
|
cts = nrf_uarte_cts_pin_get(p_instance->reg.p_uarte);
|
|
nrf_uarte_txrx_pins_disconnect(p_instance->reg.p_uarte);
|
|
nrf_uarte_hwfc_pins_disconnect(p_instance->reg.p_uarte);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
txd = nrf_uart_tx_pin_get(p_instance->reg.p_uart);
|
|
rxd = nrf_uart_rx_pin_get(p_instance->reg.p_uart);
|
|
rts = nrf_uart_rts_pin_get(p_instance->reg.p_uart);
|
|
cts = nrf_uart_cts_pin_get(p_instance->reg.p_uart);
|
|
nrf_uart_txrx_pins_disconnect(p_instance->reg.p_uart);
|
|
nrf_uart_hwfc_pins_disconnect(p_instance->reg.p_uart);
|
|
)
|
|
|
|
if (txd != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_default(txd);
|
|
}
|
|
|
|
if (rxd != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_default(rxd);
|
|
}
|
|
|
|
if (cts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_default(cts);
|
|
}
|
|
|
|
if (rts != NRF_UART_PSEL_DISCONNECTED)
|
|
{
|
|
nrf_gpio_cfg_default(rts);
|
|
}
|
|
|
|
}
|
|
|
|
__STATIC_INLINE void uart_enable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
CODE_FOR_UARTE(nrf_uarte_enable(p_instance->reg.p_uarte);)
|
|
CODE_FOR_UART(nrf_uart_enable(p_instance->reg.p_uart););
|
|
}
|
|
|
|
__STATIC_INLINE void uart_disable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
CODE_FOR_UARTE(nrf_uarte_disable(p_instance->reg.p_uarte);)
|
|
CODE_FOR_UART(nrf_uart_disable(p_instance->reg.p_uart););
|
|
}
|
|
|
|
ret_code_t nrf_drv_uart_init(const nrf_drv_uart_t * p_instance, nrf_drv_uart_config_t const * p_config,
|
|
nrf_uart_event_handler_t event_handler)
|
|
{
|
|
ASSERT(p_config);
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
|
|
if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
NRF_LOG_ERROR("Init failed. id:%d in wrong state", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
return err_code;
|
|
}
|
|
|
|
#if (defined(UARTE_IN_USE) && defined(UART_IN_USE))
|
|
p_cb->use_easy_dma = p_config->use_easy_dma;
|
|
#endif
|
|
apply_config(p_instance, p_config);
|
|
|
|
p_cb->handler = event_handler;
|
|
p_cb->p_context = p_config->p_context;
|
|
|
|
if (p_cb->handler)
|
|
{
|
|
interrupts_enable(p_instance, p_config->interrupt_priority);
|
|
}
|
|
|
|
uart_enable(p_instance);
|
|
p_cb->rx_buffer_length = 0;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
p_cb->tx_buffer_length = 0;
|
|
p_cb->state = NRF_DRV_STATE_INITIALIZED;
|
|
p_cb->rx_enabled = false;
|
|
return err_code;
|
|
}
|
|
|
|
void nrf_drv_uart_uninit(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
|
|
uart_disable(p_instance);
|
|
|
|
if (p_cb->handler)
|
|
{
|
|
interrupts_disable(p_instance);
|
|
}
|
|
|
|
pins_to_default(p_instance);
|
|
|
|
p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
|
|
p_cb->handler = NULL;
|
|
NRF_LOG_INFO("Uninit id: %d.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
}
|
|
|
|
#if defined(UART_IN_USE)
|
|
__STATIC_INLINE void tx_byte(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
|
|
{
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_TXDRDY);
|
|
uint8_t txd = p_cb->p_tx_buffer[p_cb->tx_counter];
|
|
p_cb->tx_counter++;
|
|
nrf_uart_txd_set(p_uart, txd);
|
|
}
|
|
|
|
__STATIC_INLINE ret_code_t nrf_drv_uart_tx_for_uart(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY);
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTTX);
|
|
|
|
tx_byte(p_instance->reg.p_uart, p_cb);
|
|
|
|
if (p_cb->handler == NULL)
|
|
{
|
|
while (p_cb->tx_counter < (uint16_t) p_cb->tx_buffer_length)
|
|
{
|
|
while (!nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY) &&
|
|
p_cb->tx_counter != TX_COUNTER_ABORT_REQ_VALUE)
|
|
{
|
|
}
|
|
if (p_cb->tx_counter != TX_COUNTER_ABORT_REQ_VALUE)
|
|
{
|
|
tx_byte(p_instance->reg.p_uart, p_cb);
|
|
}
|
|
}
|
|
|
|
if (p_cb->tx_counter == TX_COUNTER_ABORT_REQ_VALUE)
|
|
{
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
}
|
|
else
|
|
{
|
|
while (!nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_TXDRDY))
|
|
{
|
|
}
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPTX);
|
|
}
|
|
p_cb->tx_buffer_length = 0;
|
|
}
|
|
return err_code;
|
|
}
|
|
#endif
|
|
|
|
#if defined(UARTE_IN_USE)
|
|
__STATIC_INLINE ret_code_t nrf_drv_uart_tx_for_uarte(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
|
|
nrf_uarte_tx_buffer_set(p_instance->reg.p_uarte, p_cb->p_tx_buffer, p_cb->tx_buffer_length);
|
|
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STARTTX);
|
|
|
|
if (p_cb->handler == NULL)
|
|
{
|
|
bool endtx;
|
|
bool txstopped;
|
|
do
|
|
{
|
|
endtx = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDTX);
|
|
txstopped = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
|
|
}
|
|
while ((!endtx) && (!txstopped));
|
|
|
|
if (txstopped)
|
|
{
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
}
|
|
p_cb->tx_buffer_length = 0;
|
|
}
|
|
return err_code;
|
|
}
|
|
#endif
|
|
|
|
ret_code_t nrf_drv_uart_tx(const nrf_drv_uart_t * p_instance, uint8_t const * const p_data, uint8_t length)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
ASSERT(p_cb->state == NRF_DRV_STATE_INITIALIZED);
|
|
ASSERT(length>0);
|
|
ASSERT(p_data);
|
|
|
|
ret_code_t err_code;
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
// EasyDMA requires that transfer buffers are placed in DataRAM,
|
|
// signal error if the are not.
|
|
if (!nrf_drv_is_in_RAM(p_data))
|
|
{
|
|
err_code = NRF_ERROR_INVALID_ADDR;
|
|
NRF_LOG_ERROR("Id:%d, Easy-DMA buffer not in RAM: %08x",
|
|
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), p_data);
|
|
return err_code;
|
|
}
|
|
)
|
|
|
|
if (nrf_drv_uart_tx_in_progress(p_instance))
|
|
{
|
|
err_code = NRF_ERROR_BUSY;
|
|
NRF_LOG_WARNING("Id:%d busy",nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
return err_code;
|
|
}
|
|
p_cb->tx_buffer_length = length;
|
|
p_cb->p_tx_buffer = p_data;
|
|
p_cb->tx_counter = 0;
|
|
|
|
NRF_LOG_INFO("TX req id:%d length: %d.",
|
|
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg),
|
|
p_cb->tx_buffer_length);
|
|
NRF_LOG_DEBUG("Tx data:");
|
|
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->p_tx_buffer,
|
|
p_cb->tx_buffer_length * sizeof(p_cb->p_tx_buffer[0]));
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
return nrf_drv_uart_tx_for_uarte(p_instance);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
return nrf_drv_uart_tx_for_uart(p_instance);
|
|
)
|
|
}
|
|
|
|
bool nrf_drv_uart_tx_in_progress(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
return (m_cb[p_instance->drv_inst_idx].tx_buffer_length != 0);
|
|
}
|
|
|
|
#if defined(UART_IN_USE)
|
|
__STATIC_INLINE void rx_enable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTRX);
|
|
}
|
|
|
|
__STATIC_INLINE void rx_byte(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
|
|
{
|
|
if (!p_cb->rx_buffer_length)
|
|
{
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXDRDY);
|
|
// Byte received when buffer is not set - data lost.
|
|
(void) nrf_uart_rxd_get(p_uart);
|
|
return;
|
|
}
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXDRDY);
|
|
p_cb->p_rx_buffer[p_cb->rx_counter] = nrf_uart_rxd_get(p_uart);
|
|
p_cb->rx_counter++;
|
|
}
|
|
|
|
__STATIC_INLINE ret_code_t nrf_drv_uart_rx_for_uart(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length, bool second_buffer)
|
|
{
|
|
ret_code_t err_code;
|
|
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
|
|
if ((!p_cb->rx_enabled) && (!second_buffer))
|
|
{
|
|
rx_enable(p_instance);
|
|
}
|
|
|
|
if (p_cb->handler == NULL)
|
|
{
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
|
|
|
|
bool rxrdy;
|
|
bool rxto;
|
|
bool error;
|
|
do
|
|
{
|
|
do
|
|
{
|
|
error = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
|
|
rxrdy = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
|
|
rxto = nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXTO);
|
|
} while ((!rxrdy) && (!rxto) && (!error));
|
|
|
|
if (error || rxto)
|
|
{
|
|
break;
|
|
}
|
|
rx_byte(p_instance->reg.p_uart, p_cb);
|
|
} while (p_cb->rx_buffer_length > p_cb->rx_counter);
|
|
|
|
p_cb->rx_buffer_length = 0;
|
|
if (error)
|
|
{
|
|
err_code = NRF_ERROR_INTERNAL;
|
|
NRF_LOG_WARNING("RX Id: %d, transfer error.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
return err_code;
|
|
}
|
|
|
|
if (rxto)
|
|
{
|
|
NRF_LOG_WARNING("RX Id: %d, aborted.", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
return err_code;
|
|
}
|
|
|
|
if (p_cb->rx_enabled)
|
|
{
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STARTRX);
|
|
}
|
|
else
|
|
{
|
|
// Skip stopping RX if driver is forced to be enabled.
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
}
|
|
err_code = NRF_SUCCESS;
|
|
return err_code;
|
|
}
|
|
#endif
|
|
|
|
#if defined(UARTE_IN_USE)
|
|
__STATIC_INLINE ret_code_t nrf_drv_uart_rx_for_uarte(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length, bool second_buffer)
|
|
{
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
|
|
nrf_uarte_rx_buffer_set(p_instance->reg.p_uarte, p_data, length);
|
|
if (!second_buffer)
|
|
{
|
|
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STARTRX);
|
|
}
|
|
else
|
|
{
|
|
nrf_uarte_shorts_enable(p_instance->reg.p_uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
|
|
}
|
|
|
|
if (m_cb[p_instance->drv_inst_idx].handler == NULL)
|
|
{
|
|
bool endrx;
|
|
bool rxto;
|
|
bool error;
|
|
do {
|
|
endrx = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
|
|
rxto = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_RXTO);
|
|
error = nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
|
|
}while ((!endrx) && (!rxto) && (!error));
|
|
|
|
m_cb[p_instance->drv_inst_idx].rx_buffer_length = 0;
|
|
|
|
if (error)
|
|
{
|
|
err_code = NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
if (rxto)
|
|
{
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
|
|
}
|
|
return err_code;
|
|
}
|
|
#endif
|
|
|
|
ret_code_t nrf_drv_uart_rx(const nrf_drv_uart_t * p_instance, uint8_t * p_data, uint8_t length)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
|
|
ASSERT(m_cb[p_instance->drv_inst_idx].state == NRF_DRV_STATE_INITIALIZED);
|
|
ASSERT(length>0);
|
|
|
|
ret_code_t err_code;
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
// EasyDMA requires that transfer buffers are placed in DataRAM,
|
|
// signal error if the are not.
|
|
if (!nrf_drv_is_in_RAM(p_data))
|
|
{
|
|
err_code = NRF_ERROR_INVALID_ADDR;
|
|
NRF_LOG_ERROR("Id:%d, Easy-DMA buffer not in RAM: %08x",
|
|
nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), p_data);
|
|
return err_code;
|
|
}
|
|
)
|
|
|
|
bool second_buffer = false;
|
|
|
|
if (p_cb->handler)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_int_disable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
)
|
|
}
|
|
if (p_cb->rx_buffer_length != 0)
|
|
{
|
|
if (p_cb->rx_secondary_buffer_length != 0)
|
|
{
|
|
if (p_cb->handler)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_int_enable(p_instance->reg.p_uarte, NRF_UARTE_INT_ERROR_MASK | NRF_UARTE_INT_ENDRX_MASK);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_int_enable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
)
|
|
}
|
|
err_code = NRF_ERROR_BUSY;
|
|
NRF_LOG_WARNING("RX Id:%d, busy", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
return err_code;
|
|
}
|
|
second_buffer = true;
|
|
}
|
|
|
|
if (!second_buffer)
|
|
{
|
|
p_cb->rx_buffer_length = length;
|
|
p_cb->p_rx_buffer = p_data;
|
|
p_cb->rx_counter = 0;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
}
|
|
else
|
|
{
|
|
p_cb->p_rx_secondary_buffer = p_data;
|
|
p_cb->rx_secondary_buffer_length = length;
|
|
}
|
|
|
|
NRF_LOG_INFO("RX Id:%d len:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg), length);
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
return nrf_drv_uart_rx_for_uarte(p_instance, p_data, length, second_buffer);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
return nrf_drv_uart_rx_for_uart(p_instance, p_data, length, second_buffer);
|
|
)
|
|
}
|
|
|
|
bool nrf_drv_uart_rx_ready(nrf_drv_uart_t const * p_instance)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
return nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ENDRX);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
return nrf_uart_event_check(p_instance->reg.p_uart, NRF_UART_EVENT_RXDRDY);
|
|
)
|
|
}
|
|
|
|
void nrf_drv_uart_rx_enable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
//Easy dma mode does not support enabling receiver without setting up buffer.
|
|
CODE_FOR_UARTE
|
|
(
|
|
ASSERT(false);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
if (!m_cb[p_instance->drv_inst_idx].rx_enabled)
|
|
{
|
|
rx_enable(p_instance);
|
|
m_cb[p_instance->drv_inst_idx].rx_enabled = true;
|
|
}
|
|
)
|
|
}
|
|
|
|
void nrf_drv_uart_rx_disable(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
//Easy dma mode does not support enabling receiver without setting up buffer.
|
|
CODE_FOR_UARTE
|
|
(
|
|
ASSERT(false);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
|
|
m_cb[p_instance->drv_inst_idx].rx_enabled = false;
|
|
)
|
|
}
|
|
|
|
uint32_t nrf_drv_uart_errorsrc_get(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
uint32_t errsrc;
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_ERROR);
|
|
errsrc = nrf_uarte_errorsrc_get_and_clear(p_instance->reg.p_uarte);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_event_clear(p_instance->reg.p_uart, NRF_UART_EVENT_ERROR);
|
|
errsrc = nrf_uart_errorsrc_get_and_clear(p_instance->reg.p_uart);
|
|
)
|
|
return errsrc;
|
|
}
|
|
|
|
__STATIC_INLINE void rx_done_event(uart_control_block_t * p_cb, uint8_t bytes, uint8_t * p_data)
|
|
{
|
|
nrf_drv_uart_event_t event;
|
|
|
|
event.type = NRF_DRV_UART_EVT_RX_DONE;
|
|
event.data.rxtx.bytes = bytes;
|
|
event.data.rxtx.p_data = p_data;
|
|
|
|
p_cb->handler(&event, p_cb->p_context);
|
|
}
|
|
|
|
__STATIC_INLINE void tx_done_event(uart_control_block_t * p_cb, uint8_t bytes)
|
|
{
|
|
nrf_drv_uart_event_t event;
|
|
|
|
event.type = NRF_DRV_UART_EVT_TX_DONE;
|
|
event.data.rxtx.bytes = bytes;
|
|
event.data.rxtx.p_data = (uint8_t *)p_cb->p_tx_buffer;
|
|
|
|
p_cb->tx_buffer_length = 0;
|
|
|
|
NRF_LOG_INFO("TX done len:%d", bytes);
|
|
p_cb->handler(&event, p_cb->p_context);
|
|
}
|
|
|
|
void nrf_drv_uart_tx_abort(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
uart_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
|
|
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_event_clear(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED);
|
|
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STOPTX);
|
|
if (p_cb->handler == NULL)
|
|
{
|
|
while (!nrf_uarte_event_check(p_instance->reg.p_uarte, NRF_UARTE_EVENT_TXSTOPPED));
|
|
}
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPTX);
|
|
if (p_cb->handler)
|
|
{
|
|
tx_done_event(p_cb, p_cb->tx_counter);
|
|
}
|
|
else
|
|
{
|
|
p_cb->tx_counter = TX_COUNTER_ABORT_REQ_VALUE;
|
|
}
|
|
)
|
|
NRF_LOG_INFO("TX abort Id:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
}
|
|
|
|
void nrf_drv_uart_rx_abort(const nrf_drv_uart_t * p_instance)
|
|
{
|
|
CODE_FOR_UARTE
|
|
(
|
|
nrf_uarte_task_trigger(p_instance->reg.p_uarte, NRF_UARTE_TASK_STOPRX);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
nrf_uart_int_disable(p_instance->reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
nrf_uart_task_trigger(p_instance->reg.p_uart, NRF_UART_TASK_STOPRX);
|
|
)
|
|
NRF_LOG_INFO("RX abort Id:%d", nrf_drv_get_IRQn((void *)p_instance->reg.p_reg));
|
|
}
|
|
|
|
|
|
#if defined(UART_IN_USE)
|
|
__STATIC_INLINE void uart_irq_handler(NRF_UART_Type * p_uart, uart_control_block_t * p_cb)
|
|
{
|
|
if (nrf_uart_int_enable_check(p_uart, NRF_UART_INT_MASK_ERROR) &&
|
|
nrf_uart_event_check(p_uart, NRF_UART_EVENT_ERROR))
|
|
{
|
|
nrf_drv_uart_event_t event;
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_ERROR);
|
|
nrf_uart_int_disable(p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
if (!p_cb->rx_enabled)
|
|
{
|
|
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STOPRX);
|
|
}
|
|
event.type = NRF_DRV_UART_EVT_ERROR;
|
|
event.data.error.error_mask = nrf_uart_errorsrc_get_and_clear(p_uart);
|
|
event.data.error.rxtx.bytes = p_cb->rx_buffer_length;
|
|
event.data.error.rxtx.p_data = p_cb->p_rx_buffer;
|
|
|
|
//abort transfer
|
|
p_cb->rx_buffer_length = 0;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
|
|
p_cb->handler(&event,p_cb->p_context);
|
|
}
|
|
else if (nrf_uart_int_enable_check(p_uart, NRF_UART_INT_MASK_RXDRDY) &&
|
|
nrf_uart_event_check(p_uart, NRF_UART_EVENT_RXDRDY))
|
|
{
|
|
rx_byte(p_uart, p_cb);
|
|
if (p_cb->rx_buffer_length == p_cb->rx_counter)
|
|
{
|
|
if (p_cb->rx_secondary_buffer_length)
|
|
{
|
|
uint8_t * p_data = p_cb->p_rx_buffer;
|
|
uint8_t rx_counter = p_cb->rx_counter;
|
|
|
|
//Switch to secondary buffer.
|
|
p_cb->rx_buffer_length = p_cb->rx_secondary_buffer_length;
|
|
p_cb->p_rx_buffer = p_cb->p_rx_secondary_buffer;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
p_cb->rx_counter = 0;
|
|
rx_done_event(p_cb, rx_counter, p_data);
|
|
}
|
|
else
|
|
{
|
|
if (!p_cb->rx_enabled)
|
|
{
|
|
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STOPRX);
|
|
}
|
|
nrf_uart_int_disable(p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_ERROR);
|
|
p_cb->rx_buffer_length = 0;
|
|
rx_done_event(p_cb, p_cb->rx_counter, p_cb->p_rx_buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nrf_uart_event_check(p_uart, NRF_UART_EVENT_TXDRDY))
|
|
{
|
|
if (p_cb->tx_counter < (uint16_t) p_cb->tx_buffer_length)
|
|
{
|
|
tx_byte(p_uart, p_cb);
|
|
}
|
|
else
|
|
{
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_TXDRDY);
|
|
if (p_cb->tx_buffer_length)
|
|
{
|
|
tx_done_event(p_cb, p_cb->tx_buffer_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nrf_uart_event_check(p_uart, NRF_UART_EVENT_RXTO))
|
|
{
|
|
nrf_uart_event_clear(p_uart, NRF_UART_EVENT_RXTO);
|
|
|
|
// RXTO event may be triggered as a result of abort call. In th
|
|
if (p_cb->rx_enabled)
|
|
{
|
|
nrf_uart_task_trigger(p_uart, NRF_UART_TASK_STARTRX);
|
|
}
|
|
if (p_cb->rx_buffer_length)
|
|
{
|
|
p_cb->rx_buffer_length = 0;
|
|
rx_done_event(p_cb, p_cb->rx_counter, p_cb->p_rx_buffer);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(UARTE_IN_USE)
|
|
__STATIC_INLINE void uarte_irq_handler(NRF_UARTE_Type * p_uarte, uart_control_block_t * p_cb)
|
|
{
|
|
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ERROR))
|
|
{
|
|
nrf_drv_uart_event_t event;
|
|
|
|
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ERROR);
|
|
|
|
event.type = NRF_DRV_UART_EVT_ERROR;
|
|
event.data.error.error_mask = nrf_uarte_errorsrc_get_and_clear(p_uarte);
|
|
event.data.error.rxtx.bytes = nrf_uarte_rx_amount_get(p_uarte);
|
|
event.data.error.rxtx.p_data = p_cb->p_rx_buffer;
|
|
|
|
//abort transfer
|
|
p_cb->rx_buffer_length = 0;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
|
|
p_cb->handler(&event, p_cb->p_context);
|
|
}
|
|
else if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ENDRX))
|
|
{
|
|
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ENDRX);
|
|
uint8_t amount = nrf_uarte_rx_amount_get(p_uarte);
|
|
// If the transfer was stopped before completion, amount of transfered bytes
|
|
// will not be equal to the buffer length. Interrupted trunsfer is ignored.
|
|
if (amount == p_cb->rx_buffer_length)
|
|
{
|
|
if (p_cb->rx_secondary_buffer_length)
|
|
{
|
|
uint8_t * p_data = p_cb->p_rx_buffer;
|
|
nrf_uarte_shorts_disable(p_uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
|
|
p_cb->rx_buffer_length = p_cb->rx_secondary_buffer_length;
|
|
p_cb->p_rx_buffer = p_cb->p_rx_secondary_buffer;
|
|
p_cb->rx_secondary_buffer_length = 0;
|
|
rx_done_event(p_cb, amount, p_data);
|
|
}
|
|
else
|
|
{
|
|
p_cb->rx_buffer_length = 0;
|
|
rx_done_event(p_cb, amount, p_cb->p_rx_buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_RXTO))
|
|
{
|
|
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_RXTO);
|
|
if (p_cb->rx_buffer_length)
|
|
{
|
|
p_cb->rx_buffer_length = 0;
|
|
rx_done_event(p_cb, nrf_uarte_rx_amount_get(p_uarte), p_cb->p_rx_buffer);
|
|
}
|
|
}
|
|
|
|
if (nrf_uarte_event_check(p_uarte, NRF_UARTE_EVENT_ENDTX))
|
|
{
|
|
nrf_uarte_event_clear(p_uarte, NRF_UARTE_EVENT_ENDTX);
|
|
if (p_cb->tx_buffer_length)
|
|
{
|
|
tx_done_event(p_cb, nrf_uarte_tx_amount_get(p_uarte));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if UART0_ENABLED
|
|
IRQ_HANDLER(0)
|
|
{
|
|
CODE_FOR_UARTE_INT
|
|
(
|
|
UART0_INSTANCE_INDEX,
|
|
uarte_irq_handler(NRF_UARTE0, &m_cb[UART0_INSTANCE_INDEX]);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
uart_irq_handler(NRF_UART0, &m_cb[UART0_INSTANCE_INDEX]);
|
|
)
|
|
}
|
|
#endif
|
|
|
|
#if UART1_ENABLED
|
|
void UARTE1_IRQHandler(void)
|
|
{
|
|
CODE_FOR_UARTE_INT
|
|
(
|
|
UART1_INSTANCE_INDEX,
|
|
uarte_irq_handler(NRF_UARTE1, &m_cb[UART1_INSTANCE_INDEX]);
|
|
)
|
|
CODE_FOR_UART
|
|
(
|
|
uart_irq_handler(NRF_UART1, &m_cb[UART1_INSTANCE_INDEX]);
|
|
)
|
|
}
|
|
#endif
|
|
#endif //NRF_MODULE_ENABLED(UART)
|
|
|