494 lines
16 KiB
C
494 lines
16 KiB
C
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
|
|
*
|
|
* The information contained herein is property of Nordic Semiconductor ASA.
|
|
* Terms and conditions of usage are described in detail in NORDIC
|
|
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
|
|
*
|
|
* Licensees are granted free, non-transferable use of the information. NO
|
|
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
|
|
* the file.
|
|
*
|
|
*/
|
|
|
|
/** @file
|
|
*
|
|
* @defgroup app_util Utility Functions and Definitions
|
|
* @{
|
|
* @ingroup app_common
|
|
*
|
|
* @brief Various types and definitions available to all applications.
|
|
*/
|
|
|
|
#ifndef APP_UTIL_H__
|
|
#define APP_UTIL_H__
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include "compiler_abstraction.h"
|
|
#include "nrf.h"
|
|
|
|
//lint -save -e27 -e10 -e19
|
|
#if defined ( __CC_ARM )
|
|
extern char STACK$$Base;
|
|
extern char STACK$$Length;
|
|
#define STACK_BASE &STACK$$Base
|
|
#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length))
|
|
#elif defined ( __ICCARM__ )
|
|
extern char CSTACK$$Base;
|
|
extern char CSTACK$$Length;
|
|
#define STACK_BASE &CSTACK$$Base
|
|
#define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length))
|
|
#elif defined ( __GNUC__ )
|
|
extern uint32_t __StackTop;
|
|
extern uint32_t __StackLimit;
|
|
#define STACK_BASE &__StackLimit
|
|
#define STACK_TOP &__StackTop
|
|
#endif
|
|
//lint -restore
|
|
|
|
enum
|
|
{
|
|
UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */
|
|
UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */
|
|
UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */
|
|
};
|
|
|
|
|
|
/**@brief Implementation specific macro for delayed macro expansion used in string concatenation
|
|
*
|
|
* @param[in] lhs Left hand side in concatenation
|
|
* @param[in] rhs Right hand side in concatenation
|
|
*/
|
|
#define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs
|
|
|
|
|
|
/**@brief Macro used to concatenate string using delayed macro expansion
|
|
*
|
|
* @note This macro will delay concatenation until the expressions have been resolved
|
|
*
|
|
* @param[in] lhs Left hand side in concatenation
|
|
* @param[in] rhs Right hand side in concatenation
|
|
*/
|
|
#define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs)
|
|
|
|
|
|
// Disable lint-warnings/errors for STATIC_ASSERT
|
|
//lint --emacro(10,STATIC_ASSERT)
|
|
//lint --emacro(18,STATIC_ASSERT)
|
|
//lint --emacro(19,STATIC_ASSERT)
|
|
//lint --emacro(30,STATIC_ASSERT)
|
|
//lint --emacro(37,STATIC_ASSERT)
|
|
//lint --emacro(42,STATIC_ASSERT)
|
|
//lint --emacro(26,STATIC_ASSERT)
|
|
//lint --emacro(102,STATIC_ASSERT)
|
|
//lint --emacro(533,STATIC_ASSERT)
|
|
//lint --emacro(534,STATIC_ASSERT)
|
|
//lint --emacro(132,STATIC_ASSERT)
|
|
//lint --emacro(414,STATIC_ASSERT)
|
|
//lint --emacro(578,STATIC_ASSERT)
|
|
//lint --emacro(628,STATIC_ASSERT)
|
|
//lint --emacro(648,STATIC_ASSERT)
|
|
//lint --emacro(830,STATIC_ASSERT)
|
|
|
|
|
|
/**@brief Macro for doing static (i.e. compile time) assertion.
|
|
*
|
|
* @note If the EXPR isn't resolvable, then the error message won't be shown.
|
|
*
|
|
* @note The output of STATIC_ASSERT will be different across different compilers.
|
|
*
|
|
* @param[in] EXPR Constant expression to be verified.
|
|
*/
|
|
#if defined ( __COUNTER__ )
|
|
|
|
#define STATIC_ASSERT(EXPR) \
|
|
;enum { STRING_CONCATENATE(static_assert_, __COUNTER__) = 1/(!!(EXPR)) }
|
|
|
|
#else
|
|
|
|
#define STATIC_ASSERT(EXPR) \
|
|
;enum { STRING_CONCATENATE(assert_line_, __LINE__) = 1/(!!(EXPR)) }
|
|
|
|
#endif
|
|
|
|
|
|
/**@brief Implementation details for NUM_VAR_ARGS */
|
|
#define NUM_VA_ARGS_IMPL( \
|
|
_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
|
|
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
|
|
_21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
|
|
_31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
|
|
_41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \
|
|
_51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \
|
|
_61, _62, N, ...) N
|
|
|
|
|
|
/**@brief Macro to get the number of arguments in a call variadic macro call
|
|
*
|
|
* param[in] ... List of arguments
|
|
*
|
|
* @retval Number of variadic arguments in the argument list
|
|
*/
|
|
#define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61, \
|
|
60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
|
|
50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
|
|
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \
|
|
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \
|
|
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
|
|
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
|
|
|
|
|
|
/**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */
|
|
typedef uint8_t uint16_le_t[2];
|
|
|
|
/**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */
|
|
typedef uint8_t uint32_le_t[4];
|
|
|
|
/**@brief Byte array type. */
|
|
typedef struct
|
|
{
|
|
uint16_t size; /**< Number of array entries. */
|
|
uint8_t * p_data; /**< Pointer to array entries. */
|
|
} uint8_array_t;
|
|
|
|
|
|
/**@brief Macro for performing rounded integer division (as opposed to truncating the result).
|
|
*
|
|
* @param[in] A Numerator.
|
|
* @param[in] B Denominator.
|
|
*
|
|
* @return Rounded (integer) result of dividing A by B.
|
|
*/
|
|
#define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B))
|
|
|
|
|
|
/**@brief Macro for checking if an integer is a power of two.
|
|
*
|
|
* @param[in] A Number to be tested.
|
|
*
|
|
* @return true if value is power of two.
|
|
* @return false if value not power of two.
|
|
*/
|
|
#define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) )
|
|
|
|
|
|
/**@brief Macro for converting milliseconds to ticks.
|
|
*
|
|
* @param[in] TIME Number of milliseconds to convert.
|
|
* @param[in] RESOLUTION Unit to be converted to in [us/ticks].
|
|
*/
|
|
#define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION))
|
|
|
|
|
|
/**@brief Macro for performing integer division, making sure the result is rounded up.
|
|
*
|
|
* @details One typical use for this is to compute the number of objects with size B is needed to
|
|
* hold A number of bytes.
|
|
*
|
|
* @param[in] A Numerator.
|
|
* @param[in] B Denominator.
|
|
*
|
|
* @return Integer result of dividing A by B, rounded up.
|
|
*/
|
|
#define CEIL_DIV(A, B) \
|
|
(((A) + (B) - 1) / (B))
|
|
|
|
|
|
/**@brief Macro for creating a buffer aligned to 4 bytes.
|
|
*
|
|
* @param[in] NAME Name of the buffor.
|
|
* @param[in] MIN_SIZE Size of this buffor (it will be rounded up to multiples of 4 bytes).
|
|
*/
|
|
#define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))]
|
|
|
|
|
|
/**@brief Macro for calculating the number of words that are needed to hold a number of bytes.
|
|
*
|
|
* @details Adds 3 and divides by 4.
|
|
*
|
|
* @param[in] n_bytes The number of bytes.
|
|
*
|
|
* @return The number of words that @p n_bytes take up (rounded up).
|
|
*/
|
|
#define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2)
|
|
|
|
|
|
/**@brief The number of bytes in a word.
|
|
*/
|
|
#define BYTES_PER_WORD (4)
|
|
|
|
|
|
/**@brief Macro for increasing a number to the nearest (larger) multiple of another number.
|
|
*
|
|
* @param[in] alignment The number to align to.
|
|
* @param[in] number The number to align (increase).
|
|
*
|
|
* @return The aligned (increased) @p number.
|
|
*/
|
|
#define ALIGN_NUM(alignment, number) ((number - 1) + alignment - ((number - 1) % alignment))
|
|
|
|
|
|
/**@brief Function for changing the value unit.
|
|
*
|
|
* @param[in] value Value to be rescaled.
|
|
* @param[in] old_unit_reversal Reversal of the incoming unit.
|
|
* @param[in] new_unit_reversal Reversal of the desired unit.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal)
|
|
{
|
|
return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal);
|
|
}
|
|
|
|
/**@brief Function for encoding a uint16 value.
|
|
*
|
|
* @param[in] value Value to be encoded.
|
|
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data)
|
|
{
|
|
p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0);
|
|
p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8);
|
|
return sizeof(uint16_t);
|
|
}
|
|
|
|
/**@brief Function for encoding a three-byte value.
|
|
*
|
|
* @param[in] value Value to be encoded.
|
|
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data)
|
|
{
|
|
p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
|
|
p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
|
|
p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
|
|
return 3;
|
|
}
|
|
|
|
/**@brief Function for encoding a uint32 value.
|
|
*
|
|
* @param[in] value Value to be encoded.
|
|
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data)
|
|
{
|
|
p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0);
|
|
p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8);
|
|
p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16);
|
|
p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24);
|
|
return sizeof(uint32_t);
|
|
}
|
|
|
|
/**@brief Function for encoding a uint48 value.
|
|
*
|
|
* @param[in] value Value to be encoded.
|
|
* @param[out] p_encoded_data Buffer where the encoded data is to be written.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data)
|
|
{
|
|
p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0);
|
|
p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8);
|
|
p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16);
|
|
p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24);
|
|
p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32);
|
|
p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40);
|
|
return 6;
|
|
}
|
|
|
|
/**@brief Function for decoding a uint16 value.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value.
|
|
*/
|
|
static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) |
|
|
(((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 ));
|
|
}
|
|
|
|
/**@brief Function for decoding a uint16 value in big-endian format.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value.
|
|
*/
|
|
static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) |
|
|
(((uint16_t)((uint8_t *)p_encoded_data)[1])) );
|
|
}
|
|
|
|
/**@brief Function for decoding a three-byte value.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value (uint32_t).
|
|
*/
|
|
static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16));
|
|
}
|
|
|
|
/**@brief Function for decoding a uint32 value.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value.
|
|
*/
|
|
static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 ));
|
|
}
|
|
|
|
/**@brief Function for decoding a uint32 value in big-endian format.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value.
|
|
*/
|
|
static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8) |
|
|
(((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) );
|
|
}
|
|
|
|
/**@brief Function for encoding a uint32 value in big-endian format.
|
|
*
|
|
* @param[in] value Value to be encoded.
|
|
* @param[out] p_encoded_data Buffer where the encoded data will be written.
|
|
*
|
|
* @return Number of bytes written.
|
|
*/
|
|
static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data)
|
|
{
|
|
#ifdef NRF51
|
|
p_encoded_data[0] = (uint8_t) ((value & 0xFF000000) >> 24);
|
|
p_encoded_data[1] = (uint8_t) ((value & 0x00FF0000) >> 16);
|
|
p_encoded_data[2] = (uint8_t) ((value & 0x0000FF00) >> 8);
|
|
p_encoded_data[3] = (uint8_t) ((value & 0x000000FF) >> 0);
|
|
#elif NRF52
|
|
*(uint32_t *)p_encoded_data = __REV(value);
|
|
#endif
|
|
return sizeof(uint32_t);
|
|
}
|
|
|
|
/**@brief Function for decoding a uint48 value.
|
|
*
|
|
* @param[in] p_encoded_data Buffer where the encoded data is stored.
|
|
*
|
|
* @return Decoded value. (uint64_t)
|
|
*/
|
|
static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data)
|
|
{
|
|
return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) |
|
|
(((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) |
|
|
(((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) |
|
|
(((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) |
|
|
(((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) |
|
|
(((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 ));
|
|
}
|
|
|
|
/** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts.
|
|
*
|
|
* @details The calculation is based on a linearized version of the battery's discharge
|
|
* curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and
|
|
* is considered to be the lower boundary.
|
|
*
|
|
* The discharge curve for CR2032 is non-linear. In this model it is split into
|
|
* 4 linear sections:
|
|
* - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV)
|
|
* - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV)
|
|
* - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV)
|
|
* - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV)
|
|
*
|
|
* These numbers are by no means accurate. Temperature and
|
|
* load in the actual application is not accounted for!
|
|
*
|
|
* @param[in] mvolts The voltage in mV
|
|
*
|
|
* @return Battery level in percent.
|
|
*/
|
|
static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts)
|
|
{
|
|
uint8_t battery_level;
|
|
|
|
if (mvolts >= 3000)
|
|
{
|
|
battery_level = 100;
|
|
}
|
|
else if (mvolts > 2900)
|
|
{
|
|
battery_level = 100 - ((3000 - mvolts) * 58) / 100;
|
|
}
|
|
else if (mvolts > 2740)
|
|
{
|
|
battery_level = 42 - ((2900 - mvolts) * 24) / 160;
|
|
}
|
|
else if (mvolts > 2440)
|
|
{
|
|
battery_level = 18 - ((2740 - mvolts) * 12) / 300;
|
|
}
|
|
else if (mvolts > 2100)
|
|
{
|
|
battery_level = 6 - ((2440 - mvolts) * 6) / 340;
|
|
}
|
|
else
|
|
{
|
|
battery_level = 0;
|
|
}
|
|
|
|
return battery_level;
|
|
}
|
|
|
|
/**@brief Function for checking if a pointer value is aligned to a 4 byte boundary.
|
|
*
|
|
* @param[in] p Pointer value to be checked.
|
|
*
|
|
* @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise.
|
|
*/
|
|
static __INLINE bool is_word_aligned(void const* p)
|
|
{
|
|
return (((uintptr_t)p & 0x03) == 0);
|
|
}
|
|
|
|
/**
|
|
* @brief Function for checking if provided address is located in stack space.
|
|
*
|
|
* @param[in] ptr Pointer to be checked.
|
|
*
|
|
* @return true if address is in stack space, false otherwise.
|
|
*/
|
|
static __INLINE bool is_address_from_stack(void * ptr)
|
|
{
|
|
if (((uint32_t)ptr >= (uint32_t)STACK_BASE) &&
|
|
((uint32_t)ptr < (uint32_t)STACK_TOP) )
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#endif // APP_UTIL_H__
|
|
|
|
/** @} */
|