/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ /** * @defgroup nrf_spi_hal SPI HAL * @{ * @ingroup nrf_spi_master * * @brief Hardware access layer for accessing the SPI peripheral. */ #ifndef NRF_SPI_H__ #define NRF_SPI_H__ #include #include #include #include "nrf.h" /** * @brief This value can be used as a parameter for the @ref nrf_spi_pins_set * function to specify that a given SPI signal (SCK, MOSI, or MISO) * shall not be connected to a physical pin. */ #define NRF_SPI_PIN_NOT_CONNECTED 0xFFFFFFFF /** * @brief SPI events. */ typedef enum { /*lint -save -e30*/ NRF_SPI_EVENT_READY = offsetof(NRF_SPI_Type, EVENTS_READY) ///< TXD byte sent and RXD byte received. /*lint -restore*/ } nrf_spi_event_t; /** * @brief SPI interrupts. */ typedef enum { NRF_SPI_INT_READY_MASK = SPI_INTENSET_READY_Msk ///< Interrupt on READY event. } nrf_spi_int_mask_t; /** * @brief SPI data rates. */ typedef enum { NRF_SPI_FREQ_125K = SPI_FREQUENCY_FREQUENCY_K125, ///< 125 kbps. NRF_SPI_FREQ_250K = SPI_FREQUENCY_FREQUENCY_K250, ///< 250 kbps. NRF_SPI_FREQ_500K = SPI_FREQUENCY_FREQUENCY_K500, ///< 500 kbps. NRF_SPI_FREQ_1M = SPI_FREQUENCY_FREQUENCY_M1, ///< 1 Mbps. NRF_SPI_FREQ_2M = SPI_FREQUENCY_FREQUENCY_M2, ///< 2 Mbps. NRF_SPI_FREQ_4M = SPI_FREQUENCY_FREQUENCY_M4, ///< 4 Mbps. // [conversion to 'int' needed to prevent compilers from complaining // that the provided value (0x80000000UL) is out of range of "int"] NRF_SPI_FREQ_8M = (int)SPI_FREQUENCY_FREQUENCY_M8 ///< 8 Mbps. } nrf_spi_frequency_t; /** * @brief SPI modes. */ typedef enum { NRF_SPI_MODE_0, ///< SCK active high, sample on leading edge of clock. NRF_SPI_MODE_1, ///< SCK active high, sample on trailing edge of clock. NRF_SPI_MODE_2, ///< SCK active low, sample on leading edge of clock. NRF_SPI_MODE_3 ///< SCK active low, sample on trailing edge of clock. } nrf_spi_mode_t; /** * @brief SPI bit orders. */ typedef enum { NRF_SPI_BIT_ORDER_MSB_FIRST = SPI_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first. NRF_SPI_BIT_ORDER_LSB_FIRST = SPI_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first. } nrf_spi_bit_order_t; /** * @brief Function for clearing a specific SPI event. * * @param[in] p_spi SPI instance. * @param[in] spi_event Event to clear. */ __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event); /** * @brief Function for checking the state of a specific SPI event. * * @param[in] p_spi SPI instance. * @param[in] spi_event Event to check. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event); /** * @brief Function for getting the address of a specific SPI event register. * * @param[in] p_spi SPI instance. * @param[in] spi_event Requested event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event); /** * @brief Function for enabling specified interrupts. * * @param[in] p_spi SPI instance. * @param[in] spi_int_mask Interrupts to enable. */ __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_spi, uint32_t spi_int_mask); /** * @brief Function for disabling specified interrupts. * * @param[in] p_spi SPI instance. * @param[in] spi_int_mask Interrupts to disable. */ __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_spi, uint32_t spi_int_mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_spi SPI instance. * @param[in] spi_int Interrupt to check. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_spi, nrf_spi_int_mask_t spi_int); /** * @brief Function for enabling the SPI peripheral. * * @param[in] p_spi SPI instance. */ __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_spi); /** * @brief Function for disabling the SPI peripheral. * * @param[in] p_spi SPI instance. */ __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_spi); /** * @brief Function for configuring SPI pins. * * If a given signal is not needed, pass the @ref NRF_SPI_PIN_NOT_CONNECTED * value instead of its pin number. * * @param[in] p_spi SPI instance. * @param[in] sck_pin SCK pin number. * @param[in] mosi_pin MOSI pin number. * @param[in] miso_pin MISO pin number. */ __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_spi, uint32_t sck_pin, uint32_t mosi_pin, uint32_t miso_pin); /** * @brief Function for writing data to the SPI transmitter register. * * @param[in] p_spi SPI instance. * @param[in] data TX data to send. */ __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_spi, uint8_t data); /** * @brief Function for reading data from the SPI receiver register. * * @param[in] p_spi SPI instance. * * @return RX data received. */ __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_spi); /** * @brief Function for setting the SPI master data rate. * * @param[in] p_spi SPI instance. * @param[in] frequency SPI frequency. */ __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_spi, nrf_spi_frequency_t frequency); /** * @brief Function for setting the SPI configuration. * * @param[in] p_spi SPI instance. * @param[in] spi_mode SPI mode. * @param[in] spi_bit_order SPI bit order. */ __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_spi, nrf_spi_mode_t spi_mode, nrf_spi_bit_order_t spi_bit_order); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event) { *((volatile uint32_t *)((uint8_t *)p_spi + (uint32_t)spi_event)) = 0x0UL; } __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_spi + (uint32_t)spi_event); } __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_spi, nrf_spi_event_t spi_event) { return (uint32_t *)((uint8_t *)p_spi + (uint32_t)spi_event); } __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_spi, uint32_t spi_int_mask) { p_spi->INTENSET = spi_int_mask; } __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_spi, uint32_t spi_int_mask) { p_spi->INTENCLR = spi_int_mask; } __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_spi, nrf_spi_int_mask_t spi_int) { return (bool)(p_spi->INTENSET & spi_int); } __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_spi) { p_spi->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_spi) { p_spi->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_spi, uint32_t sck_pin, uint32_t mosi_pin, uint32_t miso_pin) { p_spi->PSELSCK = sck_pin; p_spi->PSELMOSI = mosi_pin; p_spi->PSELMISO = miso_pin; } __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_spi, uint8_t data) { p_spi->TXD = data; } __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_spi) { return p_spi->RXD; } __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_spi, nrf_spi_frequency_t frequency) { p_spi->FREQUENCY = frequency; } __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_spi, nrf_spi_mode_t spi_mode, nrf_spi_bit_order_t spi_bit_order) { uint32_t config = (spi_bit_order == NRF_SPI_BIT_ORDER_MSB_FIRST ? SPI_CONFIG_ORDER_MsbFirst : SPI_CONFIG_ORDER_LsbFirst); switch (spi_mode) { default: case NRF_SPI_MODE_0: config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_1: config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_2: config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_3: config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos); break; } p_spi->CONFIG = config; } #endif // SUPPRESS_INLINE_IMPLEMENTATION #endif // NRF_SPI_H__ /** @} */