/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ #ifndef NRF_ADC_H_ #define NRF_ADC_H_ /** * @defgroup nrf_adc_hal ADC HAL * @{ * @ingroup nrf_adc * @brief @tagAPI51 Hardware access layer for managing the analog-to-digital converter (ADC). */ #include #include #include "nrf.h" #ifndef NRF52 /** * @enum nrf_adc_config_resolution_t * @brief Resolution of the analog-to-digital converter. */ /** * @brief ADC interrupts. */ typedef enum { NRF_ADC_INT_END_MASK = ADC_INTENSET_END_Msk, /**< ADC interrupt on END event. */ } nrf_adc_int_mask_t; typedef enum { NRF_ADC_CONFIG_RES_8BIT = ADC_CONFIG_RES_8bit, /**< 8 bit resolution. */ NRF_ADC_CONFIG_RES_9BIT = ADC_CONFIG_RES_9bit, /**< 9 bit resolution. */ NRF_ADC_CONFIG_RES_10BIT = ADC_CONFIG_RES_10bit, /**< 10 bit resolution. */ } nrf_adc_config_resolution_t; /** * @enum nrf_adc_config_scaling_t * @brief Scaling factor of the analog-to-digital conversion. */ typedef enum { NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE = ADC_CONFIG_INPSEL_AnalogInputNoPrescaling, /**< Full scale input. */ NRF_ADC_CONFIG_SCALING_INPUT_TWO_THIRDS = ADC_CONFIG_INPSEL_AnalogInputTwoThirdsPrescaling, /**< 2/3 scale input. */ NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD = ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling, /**< 1/3 scale input. */ NRF_ADC_CONFIG_SCALING_SUPPLY_TWO_THIRDS = ADC_CONFIG_INPSEL_SupplyTwoThirdsPrescaling, /**< 2/3 of supply. */ NRF_ADC_CONFIG_SCALING_SUPPLY_ONE_THIRD = ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling /**< 1/3 of supply. */ } nrf_adc_config_scaling_t; /** * @enum nrf_adc_config_reference_t * @brief Reference selection of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_REF_VBG = ADC_CONFIG_REFSEL_VBG, /**< 1.2 V reference. */ NRF_ADC_CONFIG_REF_SUPPLY_ONE_HALF = ADC_CONFIG_REFSEL_SupplyOneHalfPrescaling, /**< 1/2 of power supply. */ NRF_ADC_CONFIG_REF_SUPPLY_ONE_THIRD = ADC_CONFIG_REFSEL_SupplyOneThirdPrescaling, /**< 1/3 of power supply. */ NRF_ADC_CONFIG_REF_EXT_REF0 = ADC_CONFIG_REFSEL_External | ADC_CONFIG_EXTREFSEL_AnalogReference0 << ADC_CONFIG_EXTREFSEL_Pos, /**< External reference 0. */ NRF_ADC_CONFIG_REF_EXT_REF1 = ADC_CONFIG_REFSEL_External | ADC_CONFIG_EXTREFSEL_AnalogReference1 << ADC_CONFIG_EXTREFSEL_Pos, /**< External reference 0. */ } nrf_adc_config_reference_t; /** * @enum nrf_adc_config_input_t * @brief Input selection of the analog-to-digital converter. */ typedef enum { NRF_ADC_CONFIG_INPUT_DISABLED = ADC_CONFIG_PSEL_Disabled, /**< No input selected. */ NRF_ADC_CONFIG_INPUT_0 = ADC_CONFIG_PSEL_AnalogInput0, /**< Input 0. */ NRF_ADC_CONFIG_INPUT_1 = ADC_CONFIG_PSEL_AnalogInput1, /**< Input 1. */ NRF_ADC_CONFIG_INPUT_2 = ADC_CONFIG_PSEL_AnalogInput2, /**< Input 2. */ NRF_ADC_CONFIG_INPUT_3 = ADC_CONFIG_PSEL_AnalogInput3, /**< Input 3. */ NRF_ADC_CONFIG_INPUT_4 = ADC_CONFIG_PSEL_AnalogInput4, /**< Input 4. */ NRF_ADC_CONFIG_INPUT_5 = ADC_CONFIG_PSEL_AnalogInput5, /**< Input 5. */ NRF_ADC_CONFIG_INPUT_6 = ADC_CONFIG_PSEL_AnalogInput6, /**< Input 6. */ NRF_ADC_CONFIG_INPUT_7 = ADC_CONFIG_PSEL_AnalogInput7, /**< Input 7. */ } nrf_adc_config_input_t; /** * @enum nrf_adc_task_t * @brief Analog-to-digital converter tasks. */ typedef enum { /*lint -save -e30*/ NRF_ADC_TASK_START = offsetof(NRF_ADC_Type, TASKS_START), /**< ADC start sampling task. */ NRF_ADC_TASK_STOP = offsetof(NRF_ADC_Type, TASKS_STOP) /**< ADC stop sampling task. */ /*lint -restore*/ } nrf_adc_task_t; /** * @enum nrf_adc_event_t * @brief Analog-to-digital converter events. */ typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */ { /*lint -save -e30*/ NRF_ADC_EVENT_END = offsetof(NRF_ADC_Type, EVENTS_END) /**< End of conversion event. */ /*lint -restore*/ } nrf_adc_event_t; /**@brief Analog-to-digital converter configuration. */ typedef struct { nrf_adc_config_resolution_t resolution; /**< ADC resolution. */ nrf_adc_config_scaling_t scaling; /**< ADC scaling factor. */ nrf_adc_config_reference_t reference; /**< ADC reference. */ } nrf_adc_config_t; /** Default ADC configuration. */ #define NRF_ADC_CONFIG_DEFAULT { NRF_ADC_CONFIG_RES_10BIT, \ NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD, \ NRF_ADC_CONFIG_REF_VBG } /** * @brief Function for configuring ADC. * * This function powers on the analog-to-digital converter and configures it. * After the configuration, the ADC is in DISABLE state and must be * enabled before using it. * * @param[in] config Configuration parameters. */ void nrf_adc_configure(nrf_adc_config_t * config); /** * @brief Blocking function for executing a single ADC conversion. * * This function selects the desired input, starts a single conversion, * waits for it to finish, and returns the result. * After the input is selected, the analog-to-digital converter * is left in STOP state. * The function does not check if the ADC is initialized and powered. * * @param[in] input Input to be selected. * * @return Conversion result. */ int32_t nrf_adc_convert_single(nrf_adc_config_input_t input); /** * @brief Function for selecting ADC input. * * This function selects the active input of ADC. Ensure that * the ADC is powered on and in IDLE state before calling this function. * * @param[in] input Input to be selected. */ __STATIC_INLINE void nrf_adc_input_select(nrf_adc_config_input_t input) { NRF_ADC->CONFIG = ((uint32_t)input << ADC_CONFIG_PSEL_Pos) | (NRF_ADC->CONFIG & ~ADC_CONFIG_PSEL_Msk); if (input != NRF_ADC_CONFIG_INPUT_DISABLED) { NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled << ADC_ENABLE_ENABLE_Pos; } else { NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled << ADC_ENABLE_ENABLE_Pos; } } /** * @brief Function for retrieving the ADC conversion result. * * This function retrieves and returns the last analog-to-digital conversion result. * * @return Last conversion result. */ __STATIC_INLINE int32_t nrf_adc_result_get(void) { return (int32_t)NRF_ADC->RESULT; } /** * @brief Function for checking whether the ADC is busy. * * This function checks whether the analog-to-digital converter is busy with a conversion. * * @retval true If the ADC is busy. * @retval false If the ADC is not busy. */ __STATIC_INLINE bool nrf_adc_is_busy(void) { return ( (NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) == ADC_BUSY_BUSY_Msk); } /** * @brief Function for getting the ADC's enabled interrupts. * * @param[in] mask Mask of interrupts to check. * * @return State of the interrupts selected by the mask. * * @sa nrf_adc_int_enable() * @sa nrf_adc_int_disable() */ __STATIC_INLINE uint32_t nrf_adc_int_get(uint32_t mask) { return (NRF_ADC->INTENSET & mask); // when read this register will return the value of INTEN. } /** * @brief Function for starting conversion. * * @sa nrf_adc_stop() * */ __STATIC_INLINE void nrf_adc_start(void) { NRF_ADC->TASKS_START = 1; } /** * @brief Function for stopping conversion. * * If the analog-to-digital converter is in inactive state, power consumption is reduced. * * @sa nrf_adc_start() * */ __STATIC_INLINE void nrf_adc_stop(void) { NRF_ADC->TASKS_STOP = 1; } /** * @brief Function for checking if the requested ADC conversion has ended. * * @retval true If the task has finished. * @retval false If the task is still running. */ __STATIC_INLINE bool nrf_adc_conversion_finished(void) { return ((bool)NRF_ADC->EVENTS_END); } /** * @brief Function for clearing the conversion END event. */ __STATIC_INLINE void nrf_adc_conversion_event_clean(void) { NRF_ADC->EVENTS_END = 0; } /** * @brief Function for getting the address of an ADC task register. * * @param[in] adc_task ADC task. * * @return Address of the specified ADC task. */ __STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t adc_task); /** * @brief Function for getting the address of a specific ADC event register. * * @param[in] adc_event ADC event. * * @return Address of the specified ADC event. */ __STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event); /** * @brief Function for setting the CONFIG register in ADC. * * @param[in] configuration Value to be written to the CONFIG register. */ __STATIC_INLINE void nrf_adc_config_set(uint32_t configuration); /** * @brief Function for clearing an ADC event. * * @param[in] event Event to clear. */ __STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event); /** * @brief Function for checking state of an ADC event. * * @param[in] event Event to check. * * @retval true If the event is set. * @retval false If the event is not set. */ __STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event); /** * @brief Function for enabling specified interrupts. * * @param[in] int_mask Interrupts to enable. */ __STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask); /** * @brief Function for disabling specified interrupts. * * @param[in] int_mask Interrupts to disable. */ __STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] int_mask Interrupt to check. * * @retval true If the interrupt is enabled. * @retval false If the interrupt is not enabled. */ __STATIC_INLINE bool nrf_adc_int_enable_check(nrf_adc_int_mask_t int_mask); /** * @brief Function for activating a specific ADC task. * * @param[in] task Task to activate. */ __STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task); /** * @brief Function for enabling ADC. * */ __STATIC_INLINE void nrf_adc_enable(void); /** * @brief Function for disabling ADC. * */ __STATIC_INLINE void nrf_adc_disable(void); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE uint32_t nrf_adc_task_address_get(nrf_adc_task_t adc_task) { return (uint32_t)((uint8_t *)NRF_ADC + adc_task); } __STATIC_INLINE uint32_t nrf_adc_event_address_get(nrf_adc_event_t adc_event) { return (uint32_t)((uint8_t *)NRF_ADC + adc_event); } __STATIC_INLINE void nrf_adc_config_set(uint32_t configuration) { NRF_ADC->CONFIG = configuration; } __STATIC_INLINE void nrf_adc_event_clear(nrf_adc_event_t event) { *((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event)) = 0x0UL; } __STATIC_INLINE bool nrf_adc_event_check(nrf_adc_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)event); } __STATIC_INLINE void nrf_adc_int_enable(uint32_t int_mask) { NRF_ADC->INTENSET = int_mask; } __STATIC_INLINE void nrf_adc_int_disable(uint32_t int_mask) { NRF_ADC->INTENCLR = int_mask; } __STATIC_INLINE bool nrf_adc_int_enable_check(nrf_adc_int_mask_t int_mask) { return (bool)(NRF_ADC->INTENSET & int_mask); } __STATIC_INLINE void nrf_adc_task_trigger(nrf_adc_task_t task) { *((volatile uint32_t *)((uint8_t *)NRF_ADC + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE void nrf_adc_enable(void) { NRF_ADC->ENABLE = 1; } __STATIC_INLINE void nrf_adc_disable(void) { NRF_ADC->ENABLE = 0; } #endif #endif /* NRF52 */ /** *@} **/ #endif /* NRF_ADC_H_ */