#include "nrf.h" #include "nrf_log.h" #include "nrf_error.h" #include #include #include #if defined(NRF_LOG_USES_RTT) && NRF_LOG_USES_RTT == 1 #include #include static char buf_normal_up[BUFFER_SIZE_UP]; static char buf_down[BUFFER_SIZE_DOWN]; uint32_t log_rtt_init(void) { static bool initialized = false; if (initialized) { return NRF_SUCCESS; } if (SEGGER_RTT_ConfigUpBuffer(LOG_TERMINAL_NORMAL, "Normal", buf_normal_up, BUFFER_SIZE_UP, SEGGER_RTT_MODE_NO_BLOCK_TRIM ) != 0) { return NRF_ERROR_INVALID_STATE; } if (SEGGER_RTT_ConfigDownBuffer(LOG_TERMINAL_INPUT, "Input", buf_down, BUFFER_SIZE_DOWN, SEGGER_RTT_MODE_NO_BLOCK_SKIP ) != 0) { return NRF_ERROR_INVALID_STATE; } initialized = true; return NRF_SUCCESS; } // Forward declaration of SEGGER RTT vprintf function int SEGGER_RTT_vprintf(unsigned BufferIndex, const char * sFormat, va_list * pParamList); void log_rtt_printf(int terminal_index, char * format_msg, ...) { //lint -save -e526 -e628 -e530 va_list p_args; va_start(p_args, format_msg); (void)SEGGER_RTT_vprintf(terminal_index, format_msg, &p_args); va_end(p_args); //lint -restore } __INLINE void log_rtt_write_string(int terminal_index, int num_args, ...) { const char* msg; //lint -save -e516 -e530 va_list p_args; va_start(p_args, num_args); //lint -restore for (int i = 0; i < num_args; i++) { //lint -save -e26 -e10 -e64 -e526 -e628 -e530 msg = va_arg(p_args, const char*); //lint -restore (void)SEGGER_RTT_WriteString(terminal_index, msg); } va_end(p_args); } void log_rtt_write_hex(int terminal_index, uint32_t value) { char temp[11]; temp[0] = '0'; temp[1] = 'x'; temp[10] = 0; // Null termination uint8_t nibble; uint8_t i = 8; while(i-- != 0) { nibble = (value >> (4 * i)) & 0x0F; temp[9-i] = (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble); } (void)SEGGER_RTT_WriteString(terminal_index, temp); } void log_rtt_write_hex_char(int terminal_index, uint8_t value) { char temp[3]; temp[2] = 0; // Null termination uint8_t nibble; uint8_t i = 2; while(i-- != 0) { nibble = (value >> (4 * i)) & 0x0F; temp[1-i] = (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble); } (void)SEGGER_RTT_WriteString(terminal_index, temp); } __INLINE int log_rtt_has_input() { return SEGGER_RTT_HasKey(); } uint32_t log_rtt_read_input(char * c) { int r; r = SEGGER_RTT_Read(LOG_TERMINAL_INPUT, c, 1); if (r == 1) return NRF_SUCCESS; else return NRF_ERROR_NULL; } #elif defined(NRF_LOG_USES_UART) && NRF_LOG_USES_UART == 1 #include "app_uart.h" #include "app_error.h" #include #include #include "nrf.h" #include "bsp.h" #define MAX_TEST_DATA_BYTES (15U) /**< max number of test bytes to be used for tx and rx. */ #define UART_TX_BUF_SIZE 512 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 1 /**< UART RX buffer size. */ static uint8_t m_uart_data; static bool m_uart_has_input; void uart_error_cb(app_uart_evt_t * p_event) { if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR) { APP_ERROR_HANDLER(p_event->data.error_communication); } else if (p_event->evt_type == APP_UART_FIFO_ERROR) { APP_ERROR_HANDLER(p_event->data.error_code); } } uint32_t log_uart_init() { static bool initialized = false; if (initialized) { return NRF_SUCCESS; } uint32_t err_code; const app_uart_comm_params_t comm_params = { RX_PIN_NUMBER, TX_PIN_NUMBER, RTS_PIN_NUMBER, CTS_PIN_NUMBER, APP_UART_FLOW_CONTROL_ENABLED, false, UART_BAUDRATE_BAUDRATE_Baud115200 }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_error_cb, APP_IRQ_PRIORITY_LOW, err_code); initialized = true; return err_code; } //lint -save -e530 -e64 void log_uart_printf(const char * format_msg, ...) { va_list p_args; va_start(p_args, format_msg); (void)vprintf(format_msg, p_args); va_end(p_args); } __INLINE void log_uart_write_string_many(int num_args, ...) { const char* msg; va_list p_args; va_start(p_args, num_args); for (int i = 0; i < num_args; i++) { msg = va_arg(p_args, const char*); log_uart_write_string(msg); } va_end(p_args); } __INLINE void log_uart_write_string(const char* msg) { while( *msg ) { (void)app_uart_put(*msg++); } } //lint -restore void log_uart_write_hex(uint32_t value) { uint8_t nibble; uint8_t i = 8; (void)app_uart_put('0'); (void)app_uart_put('x'); while( i-- != 0 ) { nibble = (value >> (4 * i)) & 0x0F; (void)app_uart_put( (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble) ); } } void log_uart_write_hex_char(uint8_t c) { uint8_t nibble; uint8_t i = 2; while( i-- != 0 ) { nibble = (c >> (4 * i)) & 0x0F; (void)app_uart_put( (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble) ); } } __INLINE int log_uart_has_input() { if (m_uart_has_input) return 1; if (app_uart_get(&m_uart_data) == NRF_SUCCESS) { m_uart_has_input = true; return 1; } return 0; } uint32_t log_uart_read_input(char * c) { if (m_uart_has_input) { *c = (char)m_uart_data; m_uart_has_input = false; return NRF_SUCCESS; } if (app_uart_get((uint8_t *)c) == NRF_SUCCESS) { return NRF_SUCCESS; } return NRF_ERROR_NULL; } #elif defined(NRF_LOG_USES_RAW_UART) && NRF_LOG_USES_RAW_UART == 1 #include "app_uart.h" #include #include #include "bsp.h" uint32_t log_raw_uart_init() { // Disable UART NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Disabled; // Configure RX/TX pins nrf_gpio_cfg_output( TX_PIN_NUMBER ); nrf_gpio_cfg_input(RX_PIN_NUMBER, NRF_GPIO_PIN_NOPULL); // Set a default baud rate of UART0_CONFIG_BAUDRATE NRF_UART0->PSELTXD = TX_PIN_NUMBER; NRF_UART0->BAUDRATE = UART0_CONFIG_BAUDRATE; NRF_UART0->PSELRTS = 0xFFFFFFFF; NRF_UART0->PSELCTS = 0xFFFFFFFF; // Disable parity and interrupt NRF_UART0->CONFIG = (UART_CONFIG_PARITY_Excluded << UART_CONFIG_PARITY_Pos ); NRF_UART0->CONFIG |= (UART_CONFIG_HWFC_Disabled << UART_CONFIG_HWFC_Pos ); // Re-enable the UART NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled; NRF_UART0->INTENSET = 0; NRF_UART0->TASKS_STARTTX = 1; NRF_UART0->TASKS_STARTRX = 1; return NRF_SUCCESS; } void log_raw_uart_printf(const char * format_msg, ...) { static char buffer[256]; va_list p_args; va_start(p_args, format_msg); sprintf(buffer, format_msg, p_args); va_end(p_args); log_raw_uart_write_string(buffer); } __INLINE void log_raw_uart_write_char(const char c) { NRF_UART0->TXD = c; while( NRF_UART0->EVENTS_TXDRDY != 1 ); NRF_UART0->EVENTS_TXDRDY = 0; } __INLINE void log_raw_uart_write_string_many(int num_args, ...) { const char* msg; va_list p_args; va_start(p_args, num_args); for (int i = 0; i < num_args; i++) { msg = va_arg(p_args, const char*); log_raw_uart_write_string(msg); } va_end(p_args); } __INLINE void log_raw_uart_write_string(const char* msg) { while( *msg ) { NRF_UART0->TXD = *msg++; while( NRF_UART0->EVENTS_TXDRDY != 1 ); NRF_UART0->EVENTS_TXDRDY = 0; } } void log_raw_uart_write_hex(uint32_t value) { uint8_t nibble; uint8_t i = 8; log_raw_uart_write_string( "0x" ); while( i-- != 0 ) { nibble = (value >> (4 * i)) & 0x0F; log_raw_uart_write_char( (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble) ); } } void log_raw_uart_write_hex_char(uint8_t c) { uint8_t nibble; uint8_t i = 2; while( i-- != 0 ) { nibble = (c >> (4 * i)) & 0x0F; log_raw_uart_write_hex( (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble) ); } } __INLINE int log_raw_uart_has_input() { return 0; } uint32_t log_raw_uart_read_input(char * c) { return NRF_ERROR_NULL; } #endif // NRF_LOG_USES_RAW_UART == 1 const char* log_hex_char(const char c) { static volatile char hex_string[3]; hex_string[2] = 0; // Null termination uint8_t nibble; uint8_t i = 2; while(i-- != 0) { nibble = (c >> (4 * i)) & 0x0F; hex_string[1-i] = (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble); } return (const char*) hex_string; } const char* log_hex(uint32_t value) { static volatile char hex_string[11]; hex_string[0] = '0'; hex_string[1] = 'x'; hex_string[10] = 0; uint8_t nibble; uint8_t i = 8; while(i-- != 0) { nibble = (value >> (4 * i)) & 0x0F; hex_string[9-i] = (nibble > 9) ? ('A' + nibble - 10) : ('0' + nibble); } return (const char*)hex_string; }