/** * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(TIMER) #define ENABLED_TIMER_COUNT (TIMER0_ENABLED+TIMER1_ENABLED+TIMER2_ENABLED+TIMER3_ENABLED+TIMER4_ENABLED) #if ENABLED_TIMER_COUNT #include "nrf_drv_timer.h" #include "nrf_drv_common.h" #include "app_util_platform.h" #define NRF_LOG_MODULE_NAME timer #if TIMER_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL TIMER_CONFIG_LOG_LEVEL #define NRF_LOG_INFO_COLOR TIMER_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR TIMER_CONFIG_DEBUG_COLOR #else //TIMER_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL 0 #endif //TIMER_CONFIG_LOG_ENABLED #include "nrf_log.h" NRF_LOG_MODULE_REGISTER(); /**@brief Timer control block. */ typedef struct { nrf_timer_event_handler_t handler; void * context; nrf_drv_state_t state; } timer_control_block_t; static timer_control_block_t m_cb[ENABLED_TIMER_COUNT]; ret_code_t nrf_drv_timer_init(nrf_drv_timer_t const * const p_instance, nrf_drv_timer_config_t const * p_config, nrf_timer_event_handler_t timer_event_handler) { timer_control_block_t * p_cb = &m_cb[p_instance->instance_id]; ASSERT(((p_instance->p_reg == NRF_TIMER0) && TIMER0_ENABLED) || (p_instance->p_reg != NRF_TIMER0)); ASSERT(((p_instance->p_reg == NRF_TIMER1) && TIMER1_ENABLED) || (p_instance->p_reg != NRF_TIMER1)); ASSERT(((p_instance->p_reg == NRF_TIMER2) && TIMER2_ENABLED) || (p_instance->p_reg != NRF_TIMER2)); #if defined (NRF_TIMER3) ASSERT(((p_instance->p_reg == NRF_TIMER3) && TIMER3_ENABLED) || (p_instance->p_reg != NRF_TIMER3)); #endif #if defined (NRF_TIMER4) ASSERT(((p_instance->p_reg == NRF_TIMER4) && TIMER4_ENABLED) || (p_instance->p_reg != NRF_TIMER4)); #endif #ifdef SOFTDEVICE_PRESENT ASSERT(p_instance->p_reg != NRF_TIMER0); #endif ASSERT(p_config); ret_code_t err_code; if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED) { err_code = NRF_ERROR_INVALID_STATE; NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } if (timer_event_handler == NULL) { err_code = NRF_ERROR_INVALID_PARAM; NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } /* Warning 685: Relational operator '<=' always evaluates to 'true'" * Warning in NRF_TIMER_IS_BIT_WIDTH_VALID macro. Macro validate timers resolution. * Not necessary in nRF52 based systems. Obligatory in nRF51 based systems. */ /*lint -save -e685 */ ASSERT(NRF_TIMER_IS_BIT_WIDTH_VALID(p_instance->p_reg, p_config->bit_width)); //lint -restore p_cb->handler = timer_event_handler; p_cb->context = p_config->p_context; uint8_t i; for (i = 0; i < p_instance->cc_channel_count; ++i) { nrf_timer_event_clear(p_instance->p_reg, nrf_timer_compare_event_get(i)); } nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_reg), p_config->interrupt_priority); nrf_timer_mode_set(p_instance->p_reg, p_config->mode); nrf_timer_bit_width_set(p_instance->p_reg, p_config->bit_width); nrf_timer_frequency_set(p_instance->p_reg, p_config->frequency); p_cb->state = NRF_DRV_STATE_INITIALIZED; err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_timer_uninit(nrf_drv_timer_t const * const p_instance) { nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_reg)); #define DISABLE_ALL UINT32_MAX nrf_timer_shorts_disable(p_instance->p_reg, DISABLE_ALL); nrf_timer_int_disable(p_instance->p_reg, DISABLE_ALL); #undef DISABLE_ALL if (m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON) { nrf_drv_timer_disable(p_instance); } m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED; NRF_LOG_INFO("Uninitialized instance: %d.", p_instance->instance_id); } void nrf_drv_timer_enable(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_START); m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON; NRF_LOG_INFO("Enabled instance: %d.", p_instance->instance_id); } void nrf_drv_timer_disable(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_SHUTDOWN); m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED; NRF_LOG_INFO("Disabled instance: %d.", p_instance->instance_id); } void nrf_drv_timer_resume(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_START); NRF_LOG_INFO("Resumed instance: %d.", p_instance->instance_id); } void nrf_drv_timer_pause(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_STOP); NRF_LOG_INFO("Paused instance: %d.", p_instance->instance_id); } void nrf_drv_timer_clear(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_CLEAR); } void nrf_drv_timer_increment(nrf_drv_timer_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON); ASSERT(nrf_timer_mode_get(p_instance->p_reg) != NRF_TIMER_MODE_TIMER); nrf_timer_task_trigger(p_instance->p_reg, NRF_TIMER_TASK_COUNT); } uint32_t nrf_drv_timer_capture(nrf_drv_timer_t const * const p_instance, nrf_timer_cc_channel_t cc_channel) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(cc_channel < p_instance->cc_channel_count); nrf_timer_task_trigger(p_instance->p_reg, nrf_timer_capture_task_get(cc_channel)); return nrf_timer_cc_read(p_instance->p_reg, cc_channel); } void nrf_drv_timer_compare(nrf_drv_timer_t const * const p_instance, nrf_timer_cc_channel_t cc_channel, uint32_t cc_value, bool enable_int) { nrf_timer_int_mask_t timer_int = nrf_timer_compare_int_get(cc_channel); if (enable_int) { nrf_timer_int_enable(p_instance->p_reg, timer_int); } else { nrf_timer_int_disable(p_instance->p_reg, timer_int); } nrf_timer_cc_write(p_instance->p_reg, cc_channel, cc_value); NRF_LOG_INFO("Timer id: %d, capture value set: %d, channel: %d.", p_instance->instance_id, cc_value, cc_channel); } void nrf_drv_timer_extended_compare(nrf_drv_timer_t const * const p_instance, nrf_timer_cc_channel_t cc_channel, uint32_t cc_value, nrf_timer_short_mask_t timer_short_mask, bool enable_int) { nrf_timer_shorts_disable(p_instance->p_reg, (TIMER_SHORTS_COMPARE0_STOP_Msk << cc_channel) | (TIMER_SHORTS_COMPARE0_CLEAR_Msk << cc_channel)); nrf_timer_shorts_enable(p_instance->p_reg, timer_short_mask); (void)nrf_drv_timer_compare(p_instance, cc_channel, cc_value, enable_int); NRF_LOG_INFO("Timer id: %d, capture value set: %d, channel: %d.", p_instance->instance_id, cc_value, cc_channel); } void nrf_drv_timer_compare_int_enable(nrf_drv_timer_t const * const p_instance, uint32_t channel) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(channel < p_instance->cc_channel_count); nrf_timer_event_clear(p_instance->p_reg, nrf_timer_compare_event_get(channel)); nrf_timer_int_enable(p_instance->p_reg, nrf_timer_compare_int_get(channel)); } void nrf_drv_timer_compare_int_disable(nrf_drv_timer_t const * const p_instance, uint32_t channel) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(channel < p_instance->cc_channel_count); nrf_timer_int_disable(p_instance->p_reg, nrf_timer_compare_int_get(channel)); } static void irq_handler(NRF_TIMER_Type * p_reg, timer_control_block_t * p_cb, uint8_t channel_count) { uint8_t i; for (i = 0; i < channel_count; ++i) { nrf_timer_event_t event = nrf_timer_compare_event_get(i); nrf_timer_int_mask_t int_mask = nrf_timer_compare_int_get(i); if (nrf_timer_event_check(p_reg, event) && nrf_timer_int_enable_check(p_reg, int_mask)) { nrf_timer_event_clear(p_reg, event); NRF_LOG_DEBUG("Compare event, channel: %d.", i); p_cb->handler(event, p_cb->context); } } } #if NRF_MODULE_ENABLED(TIMER0) void TIMER0_IRQHandler(void) { irq_handler(NRF_TIMER0, &m_cb[TIMER0_INSTANCE_INDEX], NRF_TIMER_CC_CHANNEL_COUNT(0)); } #endif #if NRF_MODULE_ENABLED(TIMER1) void TIMER1_IRQHandler(void) { irq_handler(NRF_TIMER1, &m_cb[TIMER1_INSTANCE_INDEX], NRF_TIMER_CC_CHANNEL_COUNT(1)); } #endif #if NRF_MODULE_ENABLED(TIMER2) void TIMER2_IRQHandler(void) { irq_handler(NRF_TIMER2, &m_cb[TIMER2_INSTANCE_INDEX], NRF_TIMER_CC_CHANNEL_COUNT(2)); } #endif #if defined (NRF_TIMER3) #if NRF_MODULE_ENABLED(TIMER3) void TIMER3_IRQHandler(void) { irq_handler(NRF_TIMER3, &m_cb[TIMER3_INSTANCE_INDEX], NRF_TIMER_CC_CHANNEL_COUNT(3)); } #endif #endif #if defined (NRF_TIMER4) #if NRF_MODULE_ENABLED(TIMER4) void TIMER4_IRQHandler(void) { irq_handler(NRF_TIMER4, &m_cb[TIMER4_INSTANCE_INDEX], NRF_TIMER_CC_CHANNEL_COUNT(4)); } #endif #endif #endif // ENABLED_TIMER_COUNT #endif // NRF_MODULE_ENABLED(TIMER)