2018-02-09 16:06:27 +00:00
/**
* Copyright ( c ) 2015 - 2017 , Nordic Semiconductor ASA
*
* All rights reserved .
*
* Redistribution and use in source and binary forms , with or without modification ,
* are permitted provided that the following conditions are met :
*
* 1. Redistributions of source code must retain the above copyright notice , this
* list of conditions and the following disclaimer .
*
* 2. Redistributions in binary form , except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product , must reproduce the above copyright notice , this list of
* conditions and the following disclaimer in the documentation and / or other
* materials provided with the distribution .
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission .
*
* 4. This software , with or without modification , must only be used with a
* Nordic Semiconductor ASA integrated circuit .
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered , decompiled , modified and / or disassembled .
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA " AS IS " AND ANY EXPRESS
* OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES
* OF MERCHANTABILITY , NONINFRINGEMENT , AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR
* CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION )
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*
2018-02-07 16:32:49 +00:00
*/
/**
* @ defgroup nrf_pwm_hal PWM HAL
* @ {
* @ ingroup nrf_pwm
*
* @ brief @ tagAPI52 Hardware access layer for managing the Pulse Width Modulation ( PWM )
* peripheral .
*/
# ifndef NRF_PWM_H__
# define NRF_PWM_H__
# include <stddef.h>
# include <stdbool.h>
# include <stdint.h>
# include "nrf.h"
# include "nrf_assert.h"
2018-02-09 16:06:27 +00:00
# ifdef __cplusplus
extern " C " {
# endif
2018-02-07 16:32:49 +00:00
/**
* @ brief This value can be provided as a parameter for the @ ref nrf_pwm_pins_set
* function call to specify that a given output channel shall not be
* connected to a physical pin .
*/
# define NRF_PWM_PIN_NOT_CONNECTED 0xFFFFFFFF
/**
2018-02-09 16:06:27 +00:00
* @ brief Number of channels in each Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
*/
# define NRF_PWM_CHANNEL_COUNT 4
/**
* @ brief PWM tasks .
*/
typedef enum
{
/*lint -save -e30*/
NRF_PWM_TASK_STOP = offsetof ( NRF_PWM_Type , TASKS_STOP ) , ///< Stops PWM pulse generation on all channels at the end of the current PWM period, and stops the sequence playback.
NRF_PWM_TASK_SEQSTART0 = offsetof ( NRF_PWM_Type , TASKS_SEQSTART [ 0 ] ) , ///< Starts playback of sequence 0.
NRF_PWM_TASK_SEQSTART1 = offsetof ( NRF_PWM_Type , TASKS_SEQSTART [ 1 ] ) , ///< Starts playback of sequence 1.
NRF_PWM_TASK_NEXTSTEP = offsetof ( NRF_PWM_Type , TASKS_NEXTSTEP ) ///< Steps by one value in the current sequence if the decoder is set to @ref NRF_PWM_STEP_TRIGGERED mode.
/*lint -restore*/
} nrf_pwm_task_t ;
/**
* @ brief PWM events .
*/
typedef enum
{
/*lint -save -e30*/
NRF_PWM_EVENT_STOPPED = offsetof ( NRF_PWM_Type , EVENTS_STOPPED ) , ///< Response to STOP task, emitted when PWM pulses are no longer generated.
NRF_PWM_EVENT_SEQSTARTED0 = offsetof ( NRF_PWM_Type , EVENTS_SEQSTARTED [ 0 ] ) , ///< First PWM period started on sequence 0.
NRF_PWM_EVENT_SEQSTARTED1 = offsetof ( NRF_PWM_Type , EVENTS_SEQSTARTED [ 1 ] ) , ///< First PWM period started on sequence 1.
NRF_PWM_EVENT_SEQEND0 = offsetof ( NRF_PWM_Type , EVENTS_SEQEND [ 0 ] ) , ///< Emitted at the end of every sequence 0 when its last value has been read from RAM.
NRF_PWM_EVENT_SEQEND1 = offsetof ( NRF_PWM_Type , EVENTS_SEQEND [ 1 ] ) , ///< Emitted at the end of every sequence 1 when its last value has been read from RAM.
NRF_PWM_EVENT_PWMPERIODEND = offsetof ( NRF_PWM_Type , EVENTS_PWMPERIODEND ) , ///< Emitted at the end of each PWM period.
NRF_PWM_EVENT_LOOPSDONE = offsetof ( NRF_PWM_Type , EVENTS_LOOPSDONE ) ///< Concatenated sequences have been played the requested number of times.
/*lint -restore*/
} nrf_pwm_event_t ;
/**
* @ brief PWM interrupts .
*/
typedef enum
{
NRF_PWM_INT_STOPPED_MASK = PWM_INTENSET_STOPPED_Msk , ///< Interrupt on STOPPED event.
NRF_PWM_INT_SEQSTARTED0_MASK = PWM_INTENSET_SEQSTARTED0_Msk , ///< Interrupt on SEQSTARTED[0] event.
NRF_PWM_INT_SEQSTARTED1_MASK = PWM_INTENSET_SEQSTARTED1_Msk , ///< Interrupt on SEQSTARTED[1] event.
NRF_PWM_INT_SEQEND0_MASK = PWM_INTENSET_SEQEND0_Msk , ///< Interrupt on SEQEND[0] event.
NRF_PWM_INT_SEQEND1_MASK = PWM_INTENSET_SEQEND1_Msk , ///< Interrupt on SEQEND[1] event.
NRF_PWM_INT_PWMPERIODEND_MASK = PWM_INTENSET_PWMPERIODEND_Msk , ///< Interrupt on PWMPERIODEND event.
NRF_PWM_INT_LOOPSDONE_MASK = PWM_INTENSET_LOOPSDONE_Msk ///< Interrupt on LOOPSDONE event.
} nrf_pwm_int_mask_t ;
/**
* @ brief PWM shortcuts .
*/
typedef enum
{
NRF_PWM_SHORT_SEQEND0_STOP_MASK = PWM_SHORTS_SEQEND0_STOP_Msk , ///< Shortcut between SEQEND[0] event and STOP task.
NRF_PWM_SHORT_SEQEND1_STOP_MASK = PWM_SHORTS_SEQEND1_STOP_Msk , ///< Shortcut between SEQEND[1] event and STOP task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk , ///< Shortcut between LOOPSDONE event and SEQSTART[0] task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART1_Msk , ///< Shortcut between LOOPSDONE event and SEQSTART[1] task.
NRF_PWM_SHORT_LOOPSDONE_STOP_MASK = PWM_SHORTS_LOOPSDONE_STOP_Msk ///< Shortcut between LOOPSDONE event and STOP task.
} nrf_pwm_short_mask_t ;
/**
* @ brief PWM modes of operation .
*/
typedef enum
{
NRF_PWM_MODE_UP = PWM_MODE_UPDOWN_Up , ///< Up counter (edge-aligned PWM duty cycle).
NRF_PWM_MODE_UP_AND_DOWN = PWM_MODE_UPDOWN_UpAndDown , ///< Up and down counter (center-aligned PWM duty cycle).
} nrf_pwm_mode_t ;
/**
* @ brief PWM base clock frequencies .
*/
typedef enum
{
NRF_PWM_CLK_16MHz = PWM_PRESCALER_PRESCALER_DIV_1 , ///< 16 MHz / 1 = 16 MHz.
NRF_PWM_CLK_8MHz = PWM_PRESCALER_PRESCALER_DIV_2 , ///< 16 MHz / 2 = 8 MHz.
NRF_PWM_CLK_4MHz = PWM_PRESCALER_PRESCALER_DIV_4 , ///< 16 MHz / 4 = 4 MHz.
NRF_PWM_CLK_2MHz = PWM_PRESCALER_PRESCALER_DIV_8 , ///< 16 MHz / 8 = 2 MHz.
NRF_PWM_CLK_1MHz = PWM_PRESCALER_PRESCALER_DIV_16 , ///< 16 MHz / 16 = 1 MHz.
NRF_PWM_CLK_500kHz = PWM_PRESCALER_PRESCALER_DIV_32 , ///< 16 MHz / 32 = 500 kHz.
NRF_PWM_CLK_250kHz = PWM_PRESCALER_PRESCALER_DIV_64 , ///< 16 MHz / 64 = 250 kHz.
NRF_PWM_CLK_125kHz = PWM_PRESCALER_PRESCALER_DIV_128 ///< 16 MHz / 128 = 125 kHz.
} nrf_pwm_clk_t ;
/**
* @ brief PWM decoder load modes .
*
* The selected mode determines how the sequence data is read from RAM and
* spread to the compare registers .
*/
typedef enum
{
NRF_PWM_LOAD_COMMON = PWM_DECODER_LOAD_Common , ///< 1st half word (16-bit) used in all PWM channels (0-3).
NRF_PWM_LOAD_GROUPED = PWM_DECODER_LOAD_Grouped , ///< 1st half word (16-bit) used in channels 0 and 1; 2nd word in channels 2 and 3.
NRF_PWM_LOAD_INDIVIDUAL = PWM_DECODER_LOAD_Individual , ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; 3rd in channel 2; 4th in channel 3.
NRF_PWM_LOAD_WAVE_FORM = PWM_DECODER_LOAD_WaveForm ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; ... ; 4th as the top value for the pulse generator counter.
} nrf_pwm_dec_load_t ;
/**
* @ brief PWM decoder next step modes .
*
* The selected mode determines when the next value from the active sequence
* is loaded .
*/
typedef enum
{
NRF_PWM_STEP_AUTO = PWM_DECODER_MODE_RefreshCount , ///< Automatically after the current value is played and repeated the requested number of times.
NRF_PWM_STEP_TRIGGERED = PWM_DECODER_MODE_NextStep ///< When the @ref NRF_PWM_TASK_NEXTSTEP task is triggered.
} nrf_pwm_dec_step_t ;
/**
* @ brief Type used for defining duty cycle values for a sequence
* loaded in @ ref NRF_PWM_LOAD_COMMON mode .
*/
typedef uint16_t nrf_pwm_values_common_t ;
/**
* @ brief Structure for defining duty cycle values for a sequence
* loaded in @ ref NRF_PWM_LOAD_GROUPED mode .
*/
typedef struct {
uint16_t group_0 ; ///< Duty cycle value for group 0 (channels 0 and 1).
uint16_t group_1 ; ///< Duty cycle value for group 1 (channels 2 and 3).
} nrf_pwm_values_grouped_t ;
/**
* @ brief Structure for defining duty cycle values for a sequence
* loaded in @ ref NRF_PWM_LOAD_INDIVIDUAL mode .
*/
typedef struct
{
uint16_t channel_0 ; ///< Duty cycle value for channel 0.
uint16_t channel_1 ; ///< Duty cycle value for channel 1.
uint16_t channel_2 ; ///< Duty cycle value for channel 2.
uint16_t channel_3 ; ///< Duty cycle value for channel 3.
} nrf_pwm_values_individual_t ;
/**
* @ brief Structure for defining duty cycle values for a sequence
* loaded in @ ref NRF_PWM_LOAD_WAVE_FORM mode .
*/
typedef struct {
uint16_t channel_0 ; ///< Duty cycle value for channel 0.
uint16_t channel_1 ; ///< Duty cycle value for channel 1.
uint16_t channel_2 ; ///< Duty cycle value for channel 2.
uint16_t counter_top ; ///< Top value for the pulse generator counter.
} nrf_pwm_values_wave_form_t ;
/**
* @ brief Union grouping pointers to arrays of duty cycle values applicable to
* various loading modes .
*/
typedef union {
nrf_pwm_values_common_t const * p_common ; ///< Pointer to be used in @ref NRF_PWM_LOAD_COMMON mode.
nrf_pwm_values_grouped_t const * p_grouped ; ///< Pointer to be used in @ref NRF_PWM_LOAD_GROUPED mode.
nrf_pwm_values_individual_t const * p_individual ; ///< Pointer to be used in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
nrf_pwm_values_wave_form_t const * p_wave_form ; ///< Pointer to be used in @ref NRF_PWM_LOAD_WAVE_FORM mode.
uint16_t const * p_raw ; ///< Pointer providing raw access to the values.
} nrf_pwm_values_t ;
/**
* @ brief Structure for defining a sequence of PWM duty cycles .
*
* When the sequence is set ( by a call to @ ref nrf_pwm_sequence_set ) , the
* provided duty cycle values are not copied . The @ p values pointer is stored
* in the peripheral ' s internal register , and the values are loaded from RAM
* during the sequence playback . Therefore , you must ensure that the values
* do not change before and during the sequence playback ( for example ,
* the values cannot be placed in a local variable that is allocated on stack ) .
* If the sequence is played in a loop and the values should be updated
* before the next iteration , it is safe to modify them when the corresponding
* event signaling the end of sequence occurs ( @ ref NRF_PWM_EVENT_SEQEND0
* or @ ref NRF_PWM_EVENT_SEQEND1 , respectively ) .
*
* @ note The @ p repeats and @ p end_delay values ( which are written to the
* SEQ [ n ] . REFRESH and SEQ [ n ] . ENDDELAY registers in the peripheral ,
* respectively ) are ignored at the end of a complex sequence
* playback , indicated by the LOOPSDONE event .
* See the @ linkProductSpecification52 for more information .
*/
typedef struct
{
nrf_pwm_values_t values ; ///< Pointer to an array with duty cycle values. This array must be in Data RAM.
/**< This field is defined as an union of pointers
* to provide a convenient way to define duty
* cycle values in various loading modes
* ( see @ ref nrf_pwm_dec_load_t ) .
* In each value , the most significant bit ( 15 )
* determines the polarity of the output and the
* others ( 14 - 0 ) compose the 15 - bit value to be
* compared with the pulse generator counter . */
uint16_t length ; ///< Number of 16-bit values in the array pointed by @p values.
uint32_t repeats ; ///< Number of times that each duty cycle should be repeated (after being played once). Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
uint32_t end_delay ; ///< Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
} nrf_pwm_sequence_t ;
/**
* @ brief Helper macro for calculating the number of 16 - bit values in specified
* array of duty cycle values .
*/
2018-02-09 16:06:27 +00:00
# define NRF_PWM_VALUES_LENGTH(array) (sizeof(array) / sizeof(uint16_t))
2018-02-07 16:32:49 +00:00
/**
* @ brief Function for activating a specific PWM task .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] task Task to activate .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_task_trigger ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_task_t task ) ;
/**
* @ brief Function for getting the address of a specific PWM task register .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] task Requested task .
*
* @ return Address of the specified task register .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE uint32_t nrf_pwm_task_address_get ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_task_t task ) ;
/**
* @ brief Function for clearing a specific PWM event .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] event Event to clear .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_event_clear ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event ) ;
/**
* @ brief Function for checking the state of a specific PWM event .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] event Event to check .
*
* @ retval true If the event is set .
* @ retval false If the event is not set .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE bool nrf_pwm_event_check ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event ) ;
/**
* @ brief Function for getting the address of a specific PWM event register .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] event Requested event .
*
* @ return Address of the specified event register .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE uint32_t nrf_pwm_event_address_get ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event ) ;
/**
* @ brief Function for enabling specified shortcuts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_shorts_mask Shortcuts to enable .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_enable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask ) ;
/**
* @ brief Function for disabling specified shortcuts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_shorts_mask Shortcuts to disable .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_disable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask ) ;
/**
* @ brief Function for setting the configuration of PWM shortcuts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_shorts_mask Shortcuts configuration to set .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask ) ;
/**
* @ brief Function for enabling specified interrupts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_int_mask Interrupts to enable .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_enable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask ) ;
/**
* @ brief Function for disabling specified interrupts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_int_mask Interrupts to disable .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_disable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask ) ;
/**
* @ brief Function for setting the configuration of PWM interrupts .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_int_mask Interrupts configuration to set .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask ) ;
/**
* @ brief Function for retrieving the state of a given interrupt .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] pwm_int Interrupt to check .
*
* @ retval true If the interrupt is enabled .
* @ retval false If the interrupt is not enabled .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE bool nrf_pwm_int_enable_check ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_int_mask_t pwm_int ) ;
/**
* @ brief Function for enabling the PWM peripheral .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_enable ( NRF_PWM_Type * p_reg ) ;
2018-02-07 16:32:49 +00:00
/**
* @ brief Function for disabling the PWM peripheral .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_disable ( NRF_PWM_Type * p_reg ) ;
2018-02-07 16:32:49 +00:00
/**
* @ brief Function for assigning pins to PWM output channels .
*
* Usage of all PWM output channels is optional . If a given channel is not
* needed , pass the @ ref NRF_PWM_PIN_NOT_CONNECTED value instead of its pin
* number .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] out_pins Array with pin numbers for individual PWM output channels .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_pins_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t out_pins [ NRF_PWM_CHANNEL_COUNT ] ) ;
/**
* @ brief Function for configuring the PWM peripheral .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] base_clock Base clock frequency .
* @ param [ in ] mode Operating mode of the pulse generator counter .
* @ param [ in ] top_value Value up to which the pulse generator counter counts .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_configure ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_clk_t base_clock ,
nrf_pwm_mode_t mode ,
uint16_t top_value ) ;
/**
* @ brief Function for defining a sequence of PWM duty cycles .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] seq_id Identifier of the sequence ( 0 or 1 ) .
* @ param [ in ] p_seq Pointer to the sequence definition .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_sequence_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
nrf_pwm_sequence_t const * p_seq ) ;
/**
* @ brief Function for modifying the pointer to the duty cycle values
* in the specified sequence .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] seq_id Identifier of the sequence ( 0 or 1 ) .
* @ param [ in ] p_values Pointer to an array with duty cycle values .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_ptr_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint16_t const * p_values ) ;
/**
* @ brief Function for modifying the total number of duty cycle values
* in the specified sequence .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] seq_id Identifier of the sequence ( 0 or 1 ) .
* @ param [ in ] length Number of duty cycle values .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_cnt_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint16_t length ) ;
/**
* @ brief Function for modifying the additional number of PWM periods spent
* on each duty cycle value in the specified sequence .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] seq_id Identifier of the sequence ( 0 or 1 ) .
* @ param [ in ] refresh Number of additional PWM periods for each duty cycle value .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_refresh_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint32_t refresh ) ;
/**
* @ brief Function for modifying the additional time added after the sequence
* is played .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] seq_id Identifier of the sequence ( 0 or 1 ) .
* @ param [ in ] end_delay Number of PWM periods added at the end of the sequence .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_end_delay_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint32_t end_delay ) ;
/**
* @ brief Function for setting the mode of loading sequence data from RAM
* and advancing the sequence .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] dec_load Mode of loading sequence data from RAM .
* @ param [ in ] dec_step Mode of advancing the active sequence .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_decoder_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_dec_load_t dec_load ,
nrf_pwm_dec_step_t dec_step ) ;
/**
* @ brief Function for setting the number of times the sequence playback
* should be performed .
*
* This function applies to two - sequence playback ( concatenated sequence 0 and 1 ) .
* A single sequence can be played back only once .
*
2018-02-09 16:06:27 +00:00
* @ param [ in ] p_reg Pointer to the peripheral registers structure .
2018-02-07 16:32:49 +00:00
* @ param [ in ] loop_count Number of times to perform the sequence playback .
*/
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_loop_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint16_t loop_count ) ;
# ifndef SUPPRESS_INLINE_IMPLEMENTATION
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_task_trigger ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_task_t task )
{
2018-02-09 16:06:27 +00:00
* ( ( volatile uint32_t * ) ( ( uint8_t * ) p_reg + ( uint32_t ) task ) ) = 0x1UL ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE uint32_t nrf_pwm_task_address_get ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_task_t task )
{
2018-02-09 16:06:27 +00:00
return ( ( uint32_t ) p_reg + ( uint32_t ) task ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_event_clear ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event )
{
2018-02-09 16:06:27 +00:00
* ( ( volatile uint32_t * ) ( ( uint8_t * ) p_reg + ( uint32_t ) event ) ) = 0x0UL ;
# if __CORTEX_M == 0x04
volatile uint32_t dummy = * ( ( volatile uint32_t * ) ( ( uint8_t * ) p_reg + ( uint32_t ) event ) ) ;
( void ) dummy ;
# endif
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE bool nrf_pwm_event_check ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event )
{
2018-02-09 16:06:27 +00:00
return ( bool ) * ( volatile uint32_t * ) ( ( uint8_t * ) p_reg + ( uint32_t ) event ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE uint32_t nrf_pwm_event_address_get ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_event_t event )
{
2018-02-09 16:06:27 +00:00
return ( ( uint32_t ) p_reg + ( uint32_t ) event ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_enable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > SHORTS | = pwm_shorts_mask ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_disable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > SHORTS & = ~ ( pwm_shorts_mask ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_shorts_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_shorts_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > SHORTS = pwm_shorts_mask ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_enable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > INTENSET = pwm_int_mask ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_disable ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > INTENCLR = pwm_int_mask ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_int_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t pwm_int_mask )
{
2018-02-09 16:06:27 +00:00
p_reg - > INTEN = pwm_int_mask ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE bool nrf_pwm_int_enable_check ( NRF_PWM_Type const * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_int_mask_t pwm_int )
{
2018-02-09 16:06:27 +00:00
return ( bool ) ( p_reg - > INTENSET & pwm_int ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_enable ( NRF_PWM_Type * p_reg )
2018-02-07 16:32:49 +00:00
{
2018-02-09 16:06:27 +00:00
p_reg - > ENABLE = ( PWM_ENABLE_ENABLE_Enabled < < PWM_ENABLE_ENABLE_Pos ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_disable ( NRF_PWM_Type * p_reg )
2018-02-07 16:32:49 +00:00
{
2018-02-09 16:06:27 +00:00
p_reg - > ENABLE = ( PWM_ENABLE_ENABLE_Disabled < < PWM_ENABLE_ENABLE_Pos ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_pins_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint32_t out_pins [ NRF_PWM_CHANNEL_COUNT ] )
{
uint8_t i ;
for ( i = 0 ; i < NRF_PWM_CHANNEL_COUNT ; + + i )
{
2018-02-09 16:06:27 +00:00
p_reg - > PSEL . OUT [ i ] = out_pins [ i ] ;
2018-02-07 16:32:49 +00:00
}
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_configure ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_clk_t base_clock ,
nrf_pwm_mode_t mode ,
uint16_t top_value )
{
ASSERT ( top_value < = PWM_COUNTERTOP_COUNTERTOP_Msk ) ;
2018-02-09 16:06:27 +00:00
p_reg - > PRESCALER = base_clock ;
p_reg - > MODE = mode ;
p_reg - > COUNTERTOP = top_value ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_sequence_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
nrf_pwm_sequence_t const * p_seq )
{
ASSERT ( p_seq ! = NULL ) ;
2018-02-09 16:06:27 +00:00
nrf_pwm_seq_ptr_set ( p_reg , seq_id , p_seq - > values . p_raw ) ;
nrf_pwm_seq_cnt_set ( p_reg , seq_id , p_seq - > length ) ;
nrf_pwm_seq_refresh_set ( p_reg , seq_id , p_seq - > repeats ) ;
nrf_pwm_seq_end_delay_set ( p_reg , seq_id , p_seq - > end_delay ) ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_ptr_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint16_t const * p_values )
{
ASSERT ( seq_id < = 1 ) ;
ASSERT ( p_values ! = NULL ) ;
2018-02-09 16:06:27 +00:00
p_reg - > SEQ [ seq_id ] . PTR = ( uint32_t ) p_values ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_cnt_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint16_t length )
{
ASSERT ( seq_id < = 1 ) ;
ASSERT ( length ! = 0 ) ;
ASSERT ( length < = PWM_SEQ_CNT_CNT_Msk ) ;
2018-02-09 16:06:27 +00:00
p_reg - > SEQ [ seq_id ] . CNT = length ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_refresh_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint32_t refresh )
{
ASSERT ( seq_id < = 1 ) ;
ASSERT ( refresh < = PWM_SEQ_REFRESH_CNT_Msk ) ;
2018-02-09 16:06:27 +00:00
p_reg - > SEQ [ seq_id ] . REFRESH = refresh ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_seq_end_delay_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint8_t seq_id ,
uint32_t end_delay )
{
ASSERT ( seq_id < = 1 ) ;
ASSERT ( end_delay < = PWM_SEQ_ENDDELAY_CNT_Msk ) ;
2018-02-09 16:06:27 +00:00
p_reg - > SEQ [ seq_id ] . ENDDELAY = end_delay ;
2018-02-07 16:32:49 +00:00
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_decoder_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
nrf_pwm_dec_load_t dec_load ,
nrf_pwm_dec_step_t dec_step )
{
2018-02-09 16:06:27 +00:00
p_reg - > DECODER = ( ( uint32_t ) dec_load < < PWM_DECODER_LOAD_Pos ) |
2018-02-07 16:32:49 +00:00
( ( uint32_t ) dec_step < < PWM_DECODER_MODE_Pos ) ;
}
2018-02-09 16:06:27 +00:00
__STATIC_INLINE void nrf_pwm_loop_set ( NRF_PWM_Type * p_reg ,
2018-02-07 16:32:49 +00:00
uint16_t loop_count )
{
2018-02-09 16:06:27 +00:00
p_reg - > LOOP = loop_count ;
2018-02-07 16:32:49 +00:00
}
# endif // SUPPRESS_INLINE_IMPLEMENTATION
2018-02-09 16:06:27 +00:00
# ifdef __cplusplus
}
# endif
2018-02-07 16:32:49 +00:00
# endif // NRF_PWM_H__
/** @} */