2018-04-02 07:59:19 +00:00
/*
* Copyright ( c ) 2015 - 2018 , Nordic Semiconductor ASA
* All rights reserved .
*
* Redistribution and use in source and binary forms , with or without modification ,
* are permitted provided that the following conditions are met :
*
* 1. Redistributions of source code must retain the above copyright notice , this
* list of conditions and the following disclaimer .
*
* 2. Redistributions in binary form , except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product , must reproduce the above copyright notice , this list of
* conditions and the following disclaimer in the documentation and / or other
* materials provided with the distribution .
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission .
*
* 4. This software , with or without modification , must only be used with a
* Nordic Semiconductor ASA integrated circuit .
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered , decompiled , modified and / or disassembled .
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA " AS IS " AND ANY EXPRESS
* OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES
* OF MERCHANTABILITY , NONINFRINGEMENT , AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR
* CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION )
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*/
/**
* @ defgroup nrf_soc_api SoC Library API
* @ {
*
* @ brief APIs for the SoC library .
*
*/
# ifndef NRF_SOC_H__
# define NRF_SOC_H__
# include <stdint.h>
# include "nrf.h"
# include "nrf_svc.h"
# include "nrf_error.h"
# include "nrf_error_soc.h"
# ifdef __cplusplus
extern " C " {
# endif
/**@addtogroup NRF_SOC_DEFINES Defines
* @ { */
/**@brief The number of the lowest SVC number reserved for the SoC library. */
# define SOC_SVC_BASE (0x20) /**< Base value for SVCs that are available when the SoftDevice is disabled. */
# define SOC_SVC_BASE_NOT_AVAILABLE (0x2C) /**< Base value for SVCs that are not available when the SoftDevice is disabled. */
/**@brief Guaranteed time for application to process radio inactive notification. */
# define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US (62)
/**@brief The minimum allowed timeslot extension time. */
# define NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US (200)
/**@brief The maximum processing time to handle a timeslot extension. */
# define NRF_RADIO_MAX_EXTENSION_PROCESSING_TIME_US (17)
/**@brief The latest time before the end of a timeslot the timeslot can be extended. */
# define NRF_RADIO_MIN_EXTENSION_MARGIN_US (79)
# define SOC_ECB_KEY_LENGTH (16) /**< ECB key length. */
# define SOC_ECB_CLEARTEXT_LENGTH (16) /**< ECB cleartext length. */
# define SOC_ECB_CIPHERTEXT_LENGTH (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */
# define SD_EVT_IRQn (SWI2_IRQn) /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */
# define SD_EVT_IRQHandler (SWI2_IRQHandler) / **< SoftDevice Event IRQ handler. Used for both protocol events and SoC events.
The default interrupt priority for this handler is set to 4 */
# define RADIO_NOTIFICATION_IRQn (SWI1_IRQn) /**< The radio notification IRQ number. */
# define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) / **< The radio notification IRQ handler.
The default interrupt priority for this handler is set to 4 */
# define NRF_RADIO_LENGTH_MIN_US (100) /**< The shortest allowed radio timeslot, in microseconds. */
# define NRF_RADIO_LENGTH_MAX_US (100000) /**< The longest allowed radio timeslot, in microseconds. */
# define NRF_RADIO_DISTANCE_MAX_US (128000000UL - 1UL) /**< The longest timeslot distance, in microseconds, allowed for the distance parameter (see @ref nrf_radio_request_normal_t) in the request. */
# define NRF_RADIO_EARLIEST_TIMEOUT_MAX_US (128000000UL - 1UL) /**< The longest timeout, in microseconds, allowed when requesting the earliest possible timeslot. */
# define NRF_RADIO_START_JITTER_US (2) /**< The maximum jitter in @ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START relative to the requested start time. */
/**@} */
/**@addtogroup NRF_SOC_ENUMS Enumerations
* @ { */
/**@brief The SVC numbers used by the SVC functions in the SoC library. */
enum NRF_SOC_SVCS
{
SD_PPI_CHANNEL_ENABLE_GET = SOC_SVC_BASE ,
SD_PPI_CHANNEL_ENABLE_SET = SOC_SVC_BASE + 1 ,
SD_PPI_CHANNEL_ENABLE_CLR = SOC_SVC_BASE + 2 ,
SD_PPI_CHANNEL_ASSIGN = SOC_SVC_BASE + 3 ,
SD_PPI_GROUP_TASK_ENABLE = SOC_SVC_BASE + 4 ,
SD_PPI_GROUP_TASK_DISABLE = SOC_SVC_BASE + 5 ,
SD_PPI_GROUP_ASSIGN = SOC_SVC_BASE + 6 ,
SD_PPI_GROUP_GET = SOC_SVC_BASE + 7 ,
SD_FLASH_PAGE_ERASE = SOC_SVC_BASE + 8 ,
SD_FLASH_WRITE = SOC_SVC_BASE + 9 ,
SD_PROTECTED_REGISTER_WRITE = SOC_SVC_BASE + 11 ,
SD_MUTEX_NEW = SOC_SVC_BASE_NOT_AVAILABLE ,
SD_MUTEX_ACQUIRE = SOC_SVC_BASE_NOT_AVAILABLE + 1 ,
SD_MUTEX_RELEASE = SOC_SVC_BASE_NOT_AVAILABLE + 2 ,
SD_RAND_APPLICATION_POOL_CAPACITY_GET = SOC_SVC_BASE_NOT_AVAILABLE + 3 ,
SD_RAND_APPLICATION_BYTES_AVAILABLE_GET = SOC_SVC_BASE_NOT_AVAILABLE + 4 ,
SD_RAND_APPLICATION_VECTOR_GET = SOC_SVC_BASE_NOT_AVAILABLE + 5 ,
SD_POWER_MODE_SET = SOC_SVC_BASE_NOT_AVAILABLE + 6 ,
SD_POWER_SYSTEM_OFF = SOC_SVC_BASE_NOT_AVAILABLE + 7 ,
SD_POWER_RESET_REASON_GET = SOC_SVC_BASE_NOT_AVAILABLE + 8 ,
SD_POWER_RESET_REASON_CLR = SOC_SVC_BASE_NOT_AVAILABLE + 9 ,
SD_POWER_POF_ENABLE = SOC_SVC_BASE_NOT_AVAILABLE + 10 ,
SD_POWER_POF_THRESHOLD_SET = SOC_SVC_BASE_NOT_AVAILABLE + 11 ,
SD_POWER_POF_THRESHOLDVDDH_SET = SOC_SVC_BASE_NOT_AVAILABLE + 12 ,
SD_POWER_RAM_POWER_SET = SOC_SVC_BASE_NOT_AVAILABLE + 13 ,
SD_POWER_RAM_POWER_CLR = SOC_SVC_BASE_NOT_AVAILABLE + 14 ,
SD_POWER_RAM_POWER_GET = SOC_SVC_BASE_NOT_AVAILABLE + 15 ,
SD_POWER_GPREGRET_SET = SOC_SVC_BASE_NOT_AVAILABLE + 16 ,
SD_POWER_GPREGRET_CLR = SOC_SVC_BASE_NOT_AVAILABLE + 17 ,
SD_POWER_GPREGRET_GET = SOC_SVC_BASE_NOT_AVAILABLE + 18 ,
SD_POWER_DCDC_MODE_SET = SOC_SVC_BASE_NOT_AVAILABLE + 19 ,
SD_POWER_DCDC0_MODE_SET = SOC_SVC_BASE_NOT_AVAILABLE + 20 ,
SD_APP_EVT_WAIT = SOC_SVC_BASE_NOT_AVAILABLE + 21 ,
SD_CLOCK_HFCLK_REQUEST = SOC_SVC_BASE_NOT_AVAILABLE + 22 ,
SD_CLOCK_HFCLK_RELEASE = SOC_SVC_BASE_NOT_AVAILABLE + 23 ,
SD_CLOCK_HFCLK_IS_RUNNING = SOC_SVC_BASE_NOT_AVAILABLE + 24 ,
SD_RADIO_NOTIFICATION_CFG_SET = SOC_SVC_BASE_NOT_AVAILABLE + 25 ,
SD_ECB_BLOCK_ENCRYPT = SOC_SVC_BASE_NOT_AVAILABLE + 26 ,
SD_ECB_BLOCKS_ENCRYPT = SOC_SVC_BASE_NOT_AVAILABLE + 27 ,
SD_RADIO_SESSION_OPEN = SOC_SVC_BASE_NOT_AVAILABLE + 28 ,
SD_RADIO_SESSION_CLOSE = SOC_SVC_BASE_NOT_AVAILABLE + 29 ,
SD_RADIO_REQUEST = SOC_SVC_BASE_NOT_AVAILABLE + 30 ,
SD_EVT_GET = SOC_SVC_BASE_NOT_AVAILABLE + 31 ,
SD_TEMP_GET = SOC_SVC_BASE_NOT_AVAILABLE + 32 ,
SD_POWER_USBPWRRDY_ENABLE = SOC_SVC_BASE_NOT_AVAILABLE + 33 ,
SD_POWER_USBDETECTED_ENABLE = SOC_SVC_BASE_NOT_AVAILABLE + 34 ,
SD_POWER_USBREMOVED_ENABLE = SOC_SVC_BASE_NOT_AVAILABLE + 35 ,
SD_POWER_USBREGSTATUS_GET = SOC_SVC_BASE_NOT_AVAILABLE + 36 ,
SVC_SOC_LAST = SOC_SVC_BASE_NOT_AVAILABLE + 37
} ;
/**@brief Possible values of a ::nrf_mutex_t. */
enum NRF_MUTEX_VALUES
{
NRF_MUTEX_FREE ,
NRF_MUTEX_TAKEN
} ;
/**@brief Power modes. */
enum NRF_POWER_MODES
{
NRF_POWER_MODE_CONSTLAT , /**< Constant latency mode. See power management in the reference manual. */
NRF_POWER_MODE_LOWPWR /**< Low power mode. See power management in the reference manual. */
} ;
/**@brief Power failure thresholds */
enum NRF_POWER_THRESHOLDS
{
NRF_POWER_THRESHOLD_V17 = 4UL , /**< 1.7 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V18 , /**< 1.8 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V19 , /**< 1.9 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V20 , /**< 2.0 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V21 , /**< 2.1 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V22 , /**< 2.2 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V23 , /**< 2.3 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V24 , /**< 2.4 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V25 , /**< 2.5 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V26 , /**< 2.6 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V27 , /**< 2.7 Volts power failure threshold. */
NRF_POWER_THRESHOLD_V28 /**< 2.8 Volts power failure threshold. */
} ;
/**@brief Power failure thresholds for high voltage */
enum NRF_POWER_THRESHOLDVDDHS
{
NRF_POWER_THRESHOLDVDDH_V27 , /**< 2.7 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V28 , /**< 2.8 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V29 , /**< 2.9 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V30 , /**< 3.0 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V31 , /**< 3.1 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V32 , /**< 3.2 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V33 , /**< 3.3 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V34 , /**< 3.4 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V35 , /**< 3.5 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V36 , /**< 3.6 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V37 , /**< 3.7 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V38 , /**< 3.8 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V39 , /**< 3.9 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V40 , /**< 4.0 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V41 , /**< 4.1 Volts power failure threshold. */
NRF_POWER_THRESHOLDVDDH_V42 /**< 4.2 Volts power failure threshold. */
} ;
/**@brief DC/DC converter modes. */
enum NRF_POWER_DCDC_MODES
{
NRF_POWER_DCDC_DISABLE , /**< The DCDC is disabled. */
NRF_POWER_DCDC_ENABLE /**< The DCDC is enabled. */
} ;
/**@brief Radio notification distances. */
enum NRF_RADIO_NOTIFICATION_DISTANCES
{
NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0 , /**< The event does not have a notification. */
NRF_RADIO_NOTIFICATION_DISTANCE_800US , /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_1740US , /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_2680US , /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_3620US , /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_4560US , /**< The distance from the active notification to start of radio activity. */
NRF_RADIO_NOTIFICATION_DISTANCE_5500US /**< The distance from the active notification to start of radio activity. */
} ;
/**@brief Radio notification types. */
enum NRF_RADIO_NOTIFICATION_TYPES
{
NRF_RADIO_NOTIFICATION_TYPE_NONE = 0 , /**< The event does not have a radio notification signal. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE , /**< Using interrupt for notification when the radio will be enabled. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE , /**< Using interrupt for notification when the radio has been disabled. */
NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH , /**< Using interrupt for notification both when the radio will be enabled and disabled. */
} ;
/**@brief The Radio signal callback types. */
enum NRF_RADIO_CALLBACK_SIGNAL_TYPE
{
NRF_RADIO_CALLBACK_SIGNAL_TYPE_START , /**< This signal indicates the start of the radio timeslot. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0 , /**< This signal indicates the NRF_TIMER0 interrupt. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO , /**< This signal indicates the NRF_RADIO interrupt. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED , /**< This signal indicates extend action failed. */
NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED /**< This signal indicates extend action succeeded. */
} ;
/**@brief The actions requested by the signal callback.
*
* This code gives the SOC instructions about what action to take when the signal callback has
* returned .
*/
enum NRF_RADIO_SIGNAL_CALLBACK_ACTION
{
NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE , /**< Return without action. */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND , /**< Request an extension of the current
timeslot . Maximum execution time for this action :
@ ref NRF_RADIO_MAX_EXTENSION_PROCESSING_TIME_US .
This action must be started at least
@ ref NRF_RADIO_MIN_EXTENSION_MARGIN_US before
the end of the timeslot . */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_END , /**< End the current radio timeslot. */
NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END /**< Request a new radio timeslot and end the current timeslot. */
} ;
/**@brief Radio timeslot high frequency clock source configuration. */
enum NRF_RADIO_HFCLK_CFG
{
NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED , /**< The SoftDevice will guarantee that the high frequency clock source is the
external crystal for the whole duration of the timeslot . This should be the
preferred option for events that use the radio or require high timing accuracy .
@ note The SoftDevice will automatically turn on and off the external crystal ,
at the beginning and end of the timeslot , respectively . The crystal may also
intentionally be left running after the timeslot , in cases where it is needed
by the SoftDevice shortly after the end of the timeslot . */
NRF_RADIO_HFCLK_CFG_NO_GUARANTEE /**< This configuration allows for earlier and tighter scheduling of timeslots.
The RC oscillator may be the clock source in part or for the whole duration of the timeslot .
The RC oscillator ' s accuracy must therefore be taken into consideration .
@ note If the application will use the radio peripheral in timeslots with this configuration ,
it must make sure that the crystal is running and stable before starting the radio . */
} ;
/**@brief Radio timeslot priorities. */
enum NRF_RADIO_PRIORITY
{
NRF_RADIO_PRIORITY_HIGH , /**< High (equal priority as the normal connection priority of the SoftDevice stack(s)). */
NRF_RADIO_PRIORITY_NORMAL , /**< Normal (equal priority as the priority of secondary activities of the SoftDevice stack(s)). */
} ;
/**@brief Radio timeslot request type. */
enum NRF_RADIO_REQUEST_TYPE
{
NRF_RADIO_REQ_TYPE_EARLIEST , /**< Request radio timeslot as early as possible. This should always be used for the first request in a session. */
NRF_RADIO_REQ_TYPE_NORMAL /**< Normal radio timeslot request. */
} ;
/**@brief SoC Events. */
enum NRF_SOC_EVTS
{
NRF_EVT_HFCLKSTARTED , /**< Event indicating that the HFCLK has started. */
NRF_EVT_POWER_FAILURE_WARNING , /**< Event indicating that a power failure warning has occurred. */
NRF_EVT_FLASH_OPERATION_SUCCESS , /**< Event indicating that the ongoing flash operation has completed successfully. */
NRF_EVT_FLASH_OPERATION_ERROR , /**< Event indicating that the ongoing flash operation has timed out with an error. */
NRF_EVT_RADIO_BLOCKED , /**< Event indicating that a radio timeslot was blocked. */
NRF_EVT_RADIO_CANCELED , /**< Event indicating that a radio timeslot was canceled by SoftDevice. */
NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN , /**< Event indicating that a radio timeslot signal callback handler return was invalid. */
NRF_EVT_RADIO_SESSION_IDLE , /**< Event indicating that a radio timeslot session is idle. */
NRF_EVT_RADIO_SESSION_CLOSED , /**< Event indicating that a radio timeslot session is closed. */
NRF_EVT_POWER_USB_POWER_READY , /**< Event indicating that a USB 3.3 V supply is ready. */
NRF_EVT_POWER_USB_DETECTED , /**< Event indicating that voltage supply is detected on VBUS. */
NRF_EVT_POWER_USB_REMOVED , /**< Event indicating that voltage supply is removed from VBUS. */
NRF_EVT_NUMBER_OF_EVTS
} ;
/**@} */
/**@addtogroup NRF_SOC_STRUCTURES Structures
* @ { */
/**@brief Represents a mutex for use with the nrf_mutex functions.
* @ note Accessing the value directly is not safe , use the mutex functions !
*/
typedef volatile uint8_t nrf_mutex_t ;
/**@brief Parameters for a request for a timeslot as early as possible. */
typedef struct
{
uint8_t hfclk ; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
uint8_t priority ; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
uint32_t length_us ; /**< The radio timeslot length (in the range 100 to 100,000] microseconds). */
uint32_t timeout_us ; /**< Longest acceptable delay until the start of the requested timeslot (up to @ref NRF_RADIO_EARLIEST_TIMEOUT_MAX_US microseconds). */
} nrf_radio_request_earliest_t ;
/**@brief Parameters for a normal radio timeslot request. */
typedef struct
{
uint8_t hfclk ; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
uint8_t priority ; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
uint32_t distance_us ; /**< Distance from the start of the previous radio timeslot (up to @ref NRF_RADIO_DISTANCE_MAX_US microseconds). */
uint32_t length_us ; /**< The radio timeslot length (in the range [100..100,000] microseconds). */
} nrf_radio_request_normal_t ;
/**@brief Radio timeslot request parameters. */
typedef struct
{
uint8_t request_type ; /**< Type of request, see @ref NRF_RADIO_REQUEST_TYPE. */
union
{
nrf_radio_request_earliest_t earliest ; /**< Parameters for requesting a radio timeslot as early as possible. */
nrf_radio_request_normal_t normal ; /**< Parameters for requesting a normal radio timeslot. */
} params ; /**< Parameter union. */
} nrf_radio_request_t ;
/**@brief Return parameters of the radio timeslot signal callback. */
typedef struct
{
uint8_t callback_action ; /**< The action requested by the application when returning from the signal callback, see @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION. */
union
{
struct
{
nrf_radio_request_t * p_next ; /**< The request parameters for the next radio timeslot. */
} request ; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END. */
struct
{
uint32_t length_us ; /**< Requested extension of the radio timeslot duration (microseconds) (for minimum time see @ref NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US). */
} extend ; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND. */
} params ; /**< Parameter union. */
} nrf_radio_signal_callback_return_param_t ;
/**@brief The radio timeslot signal callback type.
*
* @ note In case of invalid return parameters , the radio timeslot will automatically end
* immediately after returning from the signal callback and the
* @ ref NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN event will be sent .
* @ note The returned struct pointer must remain valid after the signal callback
* function returns . For instance , this means that it must not point to a stack variable .
*
* @ param [ in ] signal_type Type of signal , see @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE .
*
* @ return Pointer to structure containing action requested by the application .
*/
typedef nrf_radio_signal_callback_return_param_t * ( * nrf_radio_signal_callback_t ) ( uint8_t signal_type ) ;
/**@brief AES ECB parameter typedefs */
typedef uint8_t soc_ecb_key_t [ SOC_ECB_KEY_LENGTH ] ; /**< Encryption key type. */
typedef uint8_t soc_ecb_cleartext_t [ SOC_ECB_CLEARTEXT_LENGTH ] ; /**< Cleartext data type. */
typedef uint8_t soc_ecb_ciphertext_t [ SOC_ECB_CIPHERTEXT_LENGTH ] ; /**< Ciphertext data type. */
/**@brief AES ECB data structure */
typedef struct
{
soc_ecb_key_t key ; /**< Encryption key. */
soc_ecb_cleartext_t cleartext ; /**< Cleartext data. */
soc_ecb_ciphertext_t ciphertext ; /**< Ciphertext data. */
} nrf_ecb_hal_data_t ;
/**@brief AES ECB block. Used to provide multiple blocks in a single call
to @ ref sd_ecb_blocks_encrypt . */
typedef struct
{
soc_ecb_key_t const * p_key ; /**< Pointer to the Encryption key. */
soc_ecb_cleartext_t const * p_cleartext ; /**< Pointer to the Cleartext data. */
soc_ecb_ciphertext_t * p_ciphertext ; /**< Pointer to the Ciphertext data. */
} nrf_ecb_hal_data_block_t ;
/**@} */
/**@addtogroup NRF_SOC_FUNCTIONS Functions
* @ { */
/**@brief Initialize a mutex.
*
* @ param [ in ] p_mutex Pointer to the mutex to initialize .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_MUTEX_NEW , uint32_t , sd_mutex_new ( nrf_mutex_t * p_mutex ) ) ;
/**@brief Attempt to acquire a mutex.
*
* @ param [ in ] p_mutex Pointer to the mutex to acquire .
*
* @ retval : : NRF_SUCCESS The mutex was successfully acquired .
* @ retval : : NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired .
*/
SVCALL ( SD_MUTEX_ACQUIRE , uint32_t , sd_mutex_acquire ( nrf_mutex_t * p_mutex ) ) ;
/**@brief Release a mutex.
*
* @ param [ in ] p_mutex Pointer to the mutex to release .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_MUTEX_RELEASE , uint32_t , sd_mutex_release ( nrf_mutex_t * p_mutex ) ) ;
/**@brief Query the capacity of the application random pool.
*
* @ param [ out ] p_pool_capacity The capacity of the pool .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_RAND_APPLICATION_POOL_CAPACITY_GET , uint32_t , sd_rand_application_pool_capacity_get ( uint8_t * p_pool_capacity ) ) ;
/**@brief Get number of random bytes available to the application.
*
* @ param [ out ] p_bytes_available The number of bytes currently available in the pool .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_RAND_APPLICATION_BYTES_AVAILABLE_GET , uint32_t , sd_rand_application_bytes_available_get ( uint8_t * p_bytes_available ) ) ;
/**@brief Get random bytes from the application pool.
*
* @ param [ out ] p_buff Pointer to unit8_t buffer for storing the bytes .
* @ param [ in ] length Number of bytes to take from pool and place in p_buff .
*
* @ retval : : NRF_SUCCESS The requested bytes were written to p_buff .
* @ retval : : NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer , because there were not enough bytes available .
*/
SVCALL ( SD_RAND_APPLICATION_VECTOR_GET , uint32_t , sd_rand_application_vector_get ( uint8_t * p_buff , uint8_t length ) ) ;
/**@brief Gets the reset reason register.
*
* @ param [ out ] p_reset_reason Contents of the NRF_POWER - > RESETREAS register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_RESET_REASON_GET , uint32_t , sd_power_reset_reason_get ( uint32_t * p_reset_reason ) ) ;
/**@brief Clears the bits of the reset reason register.
*
* @ param [ in ] reset_reason_clr_msk Contains the bits to clear from the reset reason register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_RESET_REASON_CLR , uint32_t , sd_power_reset_reason_clr ( uint32_t reset_reason_clr_msk ) ) ;
/**@brief Sets the power mode when in CPU sleep.
*
* @ param [ in ] power_mode The power mode to use when in CPU sleep , see @ ref NRF_POWER_MODES . @ sa sd_app_evt_wait
*
* @ retval : : NRF_SUCCESS The power mode was set .
* @ retval : : NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown .
*/
SVCALL ( SD_POWER_MODE_SET , uint32_t , sd_power_mode_set ( uint8_t power_mode ) ) ;
/**@brief Puts the chip in System OFF mode.
*
* @ retval : : NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN
*/
SVCALL ( SD_POWER_SYSTEM_OFF , uint32_t , sd_power_system_off ( void ) ) ;
/**@brief Enables or disables the power-fail comparator.
*
* Enabling this will give a SoftDevice event ( NRF_EVT_POWER_FAILURE_WARNING ) when the power failure warning occurs .
* The event can be retrieved with sd_evt_get ( ) ;
*
* @ param [ in ] pof_enable True if the power - fail comparator should be enabled , false if it should be disabled .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_POF_ENABLE , uint32_t , sd_power_pof_enable ( uint8_t pof_enable ) ) ;
/**@brief Enables or disables the USB power ready event.
*
* Enabling this will give a SoftDevice event ( NRF_EVT_POWER_USB_POWER_READY ) when a USB 3.3 V supply is ready .
* The event can be retrieved with sd_evt_get ( ) ;
*
* @ param [ in ] usbpwrrdy_enable True if the power ready event should be enabled , false if it should be disabled .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_USBPWRRDY_ENABLE , uint32_t , sd_power_usbpwrrdy_enable ( uint8_t usbpwrrdy_enable ) ) ;
/**@brief Enables or disables the power USB-detected event.
*
* Enabling this will give a SoftDevice event ( NRF_EVT_POWER_USB_DETECTED ) when a voltage supply is detected on VBUS .
* The event can be retrieved with sd_evt_get ( ) ;
*
* @ param [ in ] usbdetected_enable True if the power ready event should be enabled , false if it should be disabled .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_USBDETECTED_ENABLE , uint32_t , sd_power_usbdetected_enable ( uint8_t usbdetected_enable ) ) ;
/**@brief Enables or disables the power USB-removed event.
*
* Enabling this will give a SoftDevice event ( NRF_EVT_POWER_USB_REMOVED ) when a voltage supply is removed from VBUS .
* The event can be retrieved with sd_evt_get ( ) ;
*
* @ param [ in ] usbremoved_enable True if the power ready event should be enabled , false if it should be disabled .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_USBREMOVED_ENABLE , uint32_t , sd_power_usbremoved_enable ( uint8_t usbremoved_enable ) ) ;
/**@brief Get USB supply status register content.
*
* @ param [ out ] usbregstatus The content of USBREGSTATUS register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_USBREGSTATUS_GET , uint32_t , sd_power_usbregstatus_get ( uint32_t * usbregstatus ) ) ;
/**@brief Sets the power failure comparator threshold value.
*
* @ note : Power failure comparator threshold setting . This setting applies both for normal voltage
* mode ( supply connected to both VDD and VDDH ) and high voltage mode ( supply connected to
* VDDH only ) .
*
* @ param [ in ] threshold The power - fail threshold value to use , see @ ref NRF_POWER_THRESHOLDS .
*
* @ retval : : NRF_SUCCESS The power failure threshold was set .
* @ retval : : NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown .
*/
SVCALL ( SD_POWER_POF_THRESHOLD_SET , uint32_t , sd_power_pof_threshold_set ( uint8_t threshold ) ) ;
/**@brief Sets the power failure comparator threshold value for high voltage.
*
* @ note : Power failure comparator threshold setting for high voltage mode ( supply connected to
* VDDH only ) . This setting does not apply for normal voltage mode ( supply connected to both
* VDD and VDDH ) .
*
* @ param [ in ] threshold The power - fail threshold value to use , see @ ref NRF_POWER_THRESHOLDVDDHS .
*
* @ retval : : NRF_SUCCESS The power failure threshold was set .
* @ retval : : NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown .
*/
SVCALL ( SD_POWER_POF_THRESHOLDVDDH_SET , uint32_t , sd_power_pof_thresholdvddh_set ( uint8_t threshold ) ) ;
/**@brief Writes the NRF_POWER->RAM[index].POWERSET register.
*
* @ param [ in ] index Contains the index in the NRF_POWER - > RAM [ index ] . POWERSET register to write to .
* @ param [ in ] ram_powerset Contains the word to write to the NRF_POWER - > RAM [ index ] . POWERSET register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_RAM_POWER_SET , uint32_t , sd_power_ram_power_set ( uint8_t index , uint32_t ram_powerset ) ) ;
/**@brief Writes the NRF_POWER->RAM[index].POWERCLR register.
*
* @ param [ in ] index Contains the index in the NRF_POWER - > RAM [ index ] . POWERCLR register to write to .
* @ param [ in ] ram_powerclr Contains the word to write to the NRF_POWER - > RAM [ index ] . POWERCLR register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_RAM_POWER_CLR , uint32_t , sd_power_ram_power_clr ( uint8_t index , uint32_t ram_powerclr ) ) ;
/**@brief Get contents of NRF_POWER->RAM[index].POWER register, indicates power status of RAM[index] blocks.
*
* @ param [ in ] index Contains the index in the NRF_POWER - > RAM [ index ] . POWER register to read from .
* @ param [ out ] p_ram_power Content of NRF_POWER - > RAM [ index ] . POWER register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_RAM_POWER_GET , uint32_t , sd_power_ram_power_get ( uint8_t index , uint32_t * p_ram_power ) ) ;
/**@brief Set bits in the general purpose retention registers (NRF_POWER->GPREGRET*).
*
* @ param [ in ] gpregret_id 0 for GPREGRET , 1 for GPREGRET2 .
* @ param [ in ] gpregret_msk Bits to be set in the GPREGRET register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_GPREGRET_SET , uint32_t , sd_power_gpregret_set ( uint32_t gpregret_id , uint32_t gpregret_msk ) ) ;
/**@brief Clear bits in the general purpose retention registers (NRF_POWER->GPREGRET*).
*
* @ param [ in ] gpregret_id 0 for GPREGRET , 1 for GPREGRET2 .
* @ param [ in ] gpregret_msk Bits to be clear in the GPREGRET register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_GPREGRET_CLR , uint32_t , sd_power_gpregret_clr ( uint32_t gpregret_id , uint32_t gpregret_msk ) ) ;
/**@brief Get contents of the general purpose retention registers (NRF_POWER->GPREGRET*).
*
* @ param [ in ] gpregret_id 0 for GPREGRET , 1 for GPREGRET2 .
* @ param [ out ] p_gpregret Contents of the GPREGRET register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_POWER_GPREGRET_GET , uint32_t , sd_power_gpregret_get ( uint32_t gpregret_id , uint32_t * p_gpregret ) ) ;
/**@brief Enable or disable the DC/DC regulator for the regulator stage 1 (REG1).
*
* @ param [ in ] dcdc_mode The mode of the DCDC , see @ ref NRF_POWER_DCDC_MODES .
*
* @ retval : : NRF_SUCCESS
* @ retval : : NRF_ERROR_INVALID_PARAM The DCDC mode is invalid .
*/
SVCALL ( SD_POWER_DCDC_MODE_SET , uint32_t , sd_power_dcdc_mode_set ( uint8_t dcdc_mode ) ) ;
/**@brief Enable or disable the DC/DC regulator for the regulator stage 0 (REG0).
*
* For more details on the REG0 stage , please see product specification .
*
* @ param [ in ] dcdc_mode The mode of the DCDC0 , see @ ref NRF_POWER_DCDC_MODES .
*
* @ retval : : NRF_SUCCESS
* @ retval : : NRF_ERROR_INVALID_PARAM The dcdc_mode is invalid .
*/
SVCALL ( SD_POWER_DCDC0_MODE_SET , uint32_t , sd_power_dcdc0_mode_set ( uint8_t dcdc_mode ) ) ;
/**@brief Request the high frequency crystal oscillator.
*
* Will start the high frequency crystal oscillator , the startup time of the crystal varies
* and the : : sd_clock_hfclk_is_running function can be polled to check if it has started .
*
* @ see sd_clock_hfclk_is_running
* @ see sd_clock_hfclk_release
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_CLOCK_HFCLK_REQUEST , uint32_t , sd_clock_hfclk_request ( void ) ) ;
/**@brief Releases the high frequency crystal oscillator.
*
* Will stop the high frequency crystal oscillator , this happens immediately .
*
* @ see sd_clock_hfclk_is_running
* @ see sd_clock_hfclk_request
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_CLOCK_HFCLK_RELEASE , uint32_t , sd_clock_hfclk_release ( void ) ) ;
/**@brief Checks if the high frequency crystal oscillator is running.
*
* @ see sd_clock_hfclk_request
* @ see sd_clock_hfclk_release
*
* @ param [ out ] p_is_running 1 if the external crystal oscillator is running , 0 if not .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_CLOCK_HFCLK_IS_RUNNING , uint32_t , sd_clock_hfclk_is_running ( uint32_t * p_is_running ) ) ;
/**@brief Waits for an application event.
*
* An application event is either an application interrupt or a pended interrupt when the interrupt
* is disabled .
*
* When the application waits for an application event by calling this function , an interrupt that
* is enabled will be taken immediately on pending since this function will wait in thread mode ,
* then the execution will return in the application ' s main thread .
*
* In order to wake up from disabled interrupts , the SEVONPEND flag has to be set in the Cortex - M
* MCU ' s System Control Register ( SCR ) , CMSIS_SCB . In that case , when a disabled interrupt gets
* pended , this function will return to the application ' s main thread .
*
* @ note The application must ensure that the pended flag is cleared using : : sd_nvic_ClearPendingIRQ
* in order to sleep using this function . This is only necessary for disabled interrupts , as
* the interrupt handler will clear the pending flag automatically for enabled interrupts .
*
* @ note If an application interrupt has happened since the last time sd_app_evt_wait was
* called this function will return immediately and not go to sleep . This is to avoid race
* conditions that can occur when a flag is updated in the interrupt handler and processed
* in the main loop .
*
* @ post An application interrupt has happened or a interrupt pending flag is set .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_APP_EVT_WAIT , uint32_t , sd_app_evt_wait ( void ) ) ;
/**@brief Get PPI channel enable register contents.
*
* @ param [ out ] p_channel_enable The contents of the PPI CHEN register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_CHANNEL_ENABLE_GET , uint32_t , sd_ppi_channel_enable_get ( uint32_t * p_channel_enable ) ) ;
/**@brief Set PPI channel enable register.
*
* @ param [ in ] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_CHANNEL_ENABLE_SET , uint32_t , sd_ppi_channel_enable_set ( uint32_t channel_enable_set_msk ) ) ;
/**@brief Clear PPI channel enable register.
*
* @ param [ in ] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_CHANNEL_ENABLE_CLR , uint32_t , sd_ppi_channel_enable_clr ( uint32_t channel_enable_clr_msk ) ) ;
/**@brief Assign endpoints to a PPI channel.
*
* @ param [ in ] channel_num Number of the PPI channel to assign .
* @ param [ in ] evt_endpoint Event endpoint of the PPI channel .
* @ param [ in ] task_endpoint Task endpoint of the PPI channel .
*
* @ retval : : NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid .
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_CHANNEL_ASSIGN , uint32_t , sd_ppi_channel_assign ( uint8_t channel_num , const volatile void * evt_endpoint , const volatile void * task_endpoint ) ) ;
/**@brief Task to enable a channel group.
*
* @ param [ in ] group_num Number of the channel group .
*
* @ retval : : NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_GROUP_TASK_ENABLE , uint32_t , sd_ppi_group_task_enable ( uint8_t group_num ) ) ;
/**@brief Task to disable a channel group.
*
* @ param [ in ] group_num Number of the PPI group .
*
* @ retval : : NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid .
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_GROUP_TASK_DISABLE , uint32_t , sd_ppi_group_task_disable ( uint8_t group_num ) ) ;
/**@brief Assign PPI channels to a channel group.
*
* @ param [ in ] group_num Number of the channel group .
* @ param [ in ] channel_msk Mask of the channels to assign to the group .
*
* @ retval : : NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid .
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_GROUP_ASSIGN , uint32_t , sd_ppi_group_assign ( uint8_t group_num , uint32_t channel_msk ) ) ;
/**@brief Gets the PPI channels of a channel group.
*
* @ param [ in ] group_num Number of the channel group .
* @ param [ out ] p_channel_msk Mask of the channels assigned to the group .
*
* @ retval : : NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid .
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_PPI_GROUP_GET , uint32_t , sd_ppi_group_get ( uint8_t group_num , uint32_t * p_channel_msk ) ) ;
/**@brief Configures the Radio Notification signal.
*
* @ note
* - The notification signal latency depends on the interrupt priority settings of SWI used
* for notification signal .
* - To ensure that the radio notification signal behaves in a consistent way , the radio
* notifications must be configured when there is no protocol stack or other SoftDevice
* activity in progress . It is recommended that the radio notification signal is
* configured directly after the SoftDevice has been enabled .
* - In the period between the ACTIVE signal and the start of the Radio Event , the SoftDevice
* will interrupt the application to do Radio Event preparation .
* - Using the Radio Notification feature may limit the bandwidth , as the SoftDevice may have
* to shorten the connection events to have time for the Radio Notification signals .
*
* @ param [ in ] type Type of notification signal , see @ ref NRF_RADIO_NOTIFICATION_TYPES .
* @ ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio
* notification . Using @ ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is
* recommended ( but not required ) to be used with
* @ ref NRF_RADIO_NOTIFICATION_TYPE_NONE .
*
* @ param [ in ] distance Distance between the notification signal and start of radio activity , see @ ref NRF_RADIO_NOTIFICATION_DISTANCES .
* This parameter is ignored when @ ref NRF_RADIO_NOTIFICATION_TYPE_NONE or
* @ ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used .
*
* @ retval : : NRF_ERROR_INVALID_PARAM The group number is invalid .
* @ retval : : NRF_ERROR_INVALID_STATE A protocol stack or other SoftDevice is running . Stop all
* running activities and retry .
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_RADIO_NOTIFICATION_CFG_SET , uint32_t , sd_radio_notification_cfg_set ( uint8_t type , uint8_t distance ) ) ;
/**@brief Encrypts a block according to the specified parameters.
*
* 128 - bit AES encryption .
*
* @ note :
* - The application may set the SEVONPEND bit in the SCR to 1 to make the SoftDevice sleep while
* the ECB is running . The SEVONPEND bit should only be cleared ( set to 0 ) from application
* main or low interrupt level .
*
* @ param [ in , out ] p_ecb_data Pointer to the ECB parameters ' struct ( two input
* parameters and one output parameter ) .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_ECB_BLOCK_ENCRYPT , uint32_t , sd_ecb_block_encrypt ( nrf_ecb_hal_data_t * p_ecb_data ) ) ;
/**@brief Encrypts multiple data blocks provided as an array of data block structures.
*
* @ details : Performs 128 - bit AES encryption on multiple data blocks
*
* @ note :
* - The application may set the SEVONPEND bit in the SCR to 1 to make the SoftDevice sleep while
* the ECB is running . The SEVONPEND bit should only be cleared ( set to 0 ) from application
* main or low interrupt level .
*
* @ param [ in ] block_count Count of blocks in the p_data_blocks array .
* @ param [ in , out ] p_data_blocks Pointer to the first entry in a contiguous array of
* @ ref nrf_ecb_hal_data_block_t structures .
*
* @ retval : : NRF_SUCCESS
*/
SVCALL ( SD_ECB_BLOCKS_ENCRYPT , uint32_t , sd_ecb_blocks_encrypt ( uint8_t block_count , nrf_ecb_hal_data_block_t * p_data_blocks ) ) ;
/**@brief Gets any pending events generated by the SoC API.
*
* The application should keep calling this function to get events , until : : NRF_ERROR_NOT_FOUND is returned .
*
* @ param [ out ] p_evt_id Set to one of the values in @ ref NRF_SOC_EVTS , if any events are pending .
*
* @ retval : : NRF_SUCCESS An event was pending . The event id is written in the p_evt_id parameter .
* @ retval : : NRF_ERROR_NOT_FOUND No pending events .
*/
SVCALL ( SD_EVT_GET , uint32_t , sd_evt_get ( uint32_t * p_evt_id ) ) ;
/**@brief Get the temperature measured on the chip
*
* This function will block until the temperature measurement is done .
* It takes around 50 us from call to return .
*
* @ param [ out ] p_temp Result of temperature measurement . Die temperature in 0.25 degrees Celsius .
*
* @ retval : : NRF_SUCCESS A temperature measurement was done , and the temperature was written to temp
*/
SVCALL ( SD_TEMP_GET , uint32_t , sd_temp_get ( int32_t * p_temp ) ) ;
/**@brief Flash Write
*
* Commands to write a buffer to flash
*
* If the SoftDevice is enabled :
* This call initiates the flash access command , and its completion will be communicated to the
* application with exactly one of the following events :
* - @ ref NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed .
* - @ ref NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started .
*
* If the SoftDevice is not enabled no event will be generated , and this call will return @ ref NRF_SUCCESS when the
* write has been completed
*
* @ note
* - This call takes control over the radio and the CPU during flash erase and write to make sure that
* they will not interfere with the flash access . This means that all interrupts will be blocked
* for a predictable time ( depending on the NVMC specification in the device ' s Product Specification
* and the command parameters ) .
* - The data in the p_src buffer should not be modified before the @ ref NRF_EVT_FLASH_OPERATION_SUCCESS
* or the @ ref NRF_EVT_FLASH_OPERATION_ERROR have been received if the SoftDevice is enabled .
* - This call will make the SoftDevice trigger a hardfault when the page is written , if it is
* protected .
*
*
* @ param [ in ] p_dst Pointer to start of flash location to be written .
* @ param [ in ] p_src Pointer to buffer with data to be written .
* @ param [ in ] size Number of 32 - bit words to write . Maximum size is the number of words in one
* flash page . See the device ' s Product Specification for details .
*
* @ retval : : NRF_ERROR_INVALID_ADDR Tried to write to a non existing flash address , or p_dst or p_src was unaligned .
* @ retval : : NRF_ERROR_BUSY The previous command has not yet completed .
* @ retval : : NRF_ERROR_INVALID_LENGTH Size was 0 , or higher than the maximum allowed size .
* @ retval : : NRF_ERROR_FORBIDDEN Tried to write to an address outside the application flash area .
* @ retval : : NRF_SUCCESS The command was accepted .
*/
SVCALL ( SD_FLASH_WRITE , uint32_t , sd_flash_write ( uint32_t * p_dst , uint32_t const * p_src , uint32_t size ) ) ;
/**@brief Flash Erase page
*
* Commands to erase a flash page
* If the SoftDevice is enabled :
* This call initiates the flash access command , and its completion will be communicated to the
* application with exactly one of the following events :
* - @ ref NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed .
* - @ ref NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started .
*
* If the SoftDevice is not enabled no event will be generated , and this call will return @ ref NRF_SUCCESS when the
* erase has been completed
*
* @ note
* - This call takes control over the radio and the CPU during flash erase and write to make sure that
* they will not interfere with the flash access . This means that all interrupts will be blocked
* for a predictable time ( depending on the NVMC specification in the device ' s Product Specification
* and the command parameters ) .
* - This call will make the SoftDevice trigger a hardfault when the page is erased , if it is
* protected .
*
*
* @ param [ in ] page_number Page number of the page to erase
*
* @ retval : : NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error .
* @ retval : : NRF_ERROR_INVALID_ADDR Tried to erase to a non existing flash page .
* @ retval : : NRF_ERROR_BUSY The previous command has not yet completed .
* @ retval : : NRF_ERROR_FORBIDDEN Tried to erase a page outside the application flash area .
* @ retval : : NRF_SUCCESS The command was accepted .
*/
SVCALL ( SD_FLASH_PAGE_ERASE , uint32_t , sd_flash_page_erase ( uint32_t page_number ) ) ;
/**@brief Opens a session for radio timeslot requests.
*
* @ note Only one session can be open at a time .
* @ note p_radio_signal_callback ( @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START ) will be called when the radio timeslot
* starts . From this point the NRF_RADIO and NRF_TIMER0 peripherals can be freely accessed
* by the application .
* @ note p_radio_signal_callback ( @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0 ) is called whenever the NRF_TIMER0
* interrupt occurs .
* @ note p_radio_signal_callback ( @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO ) is called whenever the NRF_RADIO
* interrupt occurs .
* @ note p_radio_signal_callback ( ) will be called at ARM interrupt priority level 0. This
* implies that none of the sd_ * API calls can be used from p_radio_signal_callback ( ) .
*
* @ param [ in ] p_radio_signal_callback The signal callback .
*
* @ retval : : NRF_ERROR_INVALID_ADDR p_radio_signal_callback is an invalid function pointer .
* @ retval : : NRF_ERROR_BUSY If session cannot be opened .
* @ retval : : NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error .
* @ retval : : NRF_SUCCESS Otherwise .
*/
SVCALL ( SD_RADIO_SESSION_OPEN , uint32_t , sd_radio_session_open ( nrf_radio_signal_callback_t p_radio_signal_callback ) ) ;
/**@brief Closes a session for radio timeslot requests.
*
* @ note Any current radio timeslot will be finished before the session is closed .
* @ note If a radio timeslot is scheduled when the session is closed , it will be canceled .
* @ note The application cannot consider the session closed until the @ ref NRF_EVT_RADIO_SESSION_CLOSED
* event is received .
*
* @ retval : : NRF_ERROR_FORBIDDEN If session not opened .
* @ retval : : NRF_ERROR_BUSY If session is currently being closed .
* @ retval : : NRF_SUCCESS Otherwise .
*/
SVCALL ( SD_RADIO_SESSION_CLOSE , uint32_t , sd_radio_session_close ( void ) ) ;
/**@brief Requests a radio timeslot.
*
* @ note The request type is determined by p_request - > request_type , and can be one of @ ref NRF_RADIO_REQ_TYPE_EARLIEST
* and @ ref NRF_RADIO_REQ_TYPE_NORMAL . The first request in a session must always be of type @ ref NRF_RADIO_REQ_TYPE_EARLIEST .
* @ note For a normal request ( @ ref NRF_RADIO_REQ_TYPE_NORMAL ) , the start time of a radio timeslot is specified by
* p_request - > distance_us and is given relative to the start of the previous timeslot .
* @ note A too small p_request - > distance_us will lead to a @ ref NRF_EVT_RADIO_BLOCKED event .
* @ note Timeslots scheduled too close will lead to a @ ref NRF_EVT_RADIO_BLOCKED event .
* @ note See the SoftDevice Specification for more on radio timeslot scheduling , distances and lengths .
* @ note If an opportunity for the first radio timeslot is not found before 100 ms after the call to this
* function , it is not scheduled , and instead a @ ref NRF_EVT_RADIO_BLOCKED event is sent .
* The application may then try to schedule the first radio timeslot again .
* @ note Successful requests will result in nrf_radio_signal_callback_t ( @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START ) .
* Unsuccessful requests will result in a @ ref NRF_EVT_RADIO_BLOCKED event , see @ ref NRF_SOC_EVTS .
* @ note The jitter in the start time of the radio timeslots is + / - @ ref NRF_RADIO_START_JITTER_US us .
* @ note The nrf_radio_signal_callback_t ( @ ref NRF_RADIO_CALLBACK_SIGNAL_TYPE_START ) call has a latency relative to the
* specified radio timeslot start , but this does not affect the actual start time of the timeslot .
* @ note NRF_TIMER0 is reset at the start of the radio timeslot , and is clocked at 1 MHz from the high frequency
* ( 16 MHz ) clock source . If p_request - > hfclk_force_xtal is true , the high frequency clock is
* guaranteed to be clocked from the external crystal .
* @ note The SoftDevice will neither access the NRF_RADIO peripheral nor the NRF_TIMER0 peripheral
* during the radio timeslot .
*
* @ param [ in ] p_request Pointer to the request parameters .
*
* @ retval : : NRF_ERROR_FORBIDDEN If session not opened or the session is not IDLE .
* @ retval : : NRF_ERROR_INVALID_ADDR If the p_request pointer is invalid .
* @ retval : : NRF_ERROR_INVALID_PARAM If the parameters of p_request are not valid .
* @ retval : : NRF_SUCCESS Otherwise .
*/
SVCALL ( SD_RADIO_REQUEST , uint32_t , sd_radio_request ( nrf_radio_request_t const * p_request ) ) ;
/**@brief Write register protected by the SoftDevice
*
* This function writes to a register that is write - protected by the SoftDevice . Please refer to your
* SoftDevice Specification for more details about which registers that are protected by SoftDevice .
* This function can write to the following protected peripheral :
* - ACL
*
* @ note Protected registers may be read directly .
* @ note Register that are write - once will return @ ref NRF_SUCCESS on second set , even the value in
* the register has not changed . See the Product Specification for more details about register
* properties .
*
* @ param [ in ] p_register Pointer to register to be written .
* @ param [ in ] value Value to be written to the register .
*
* @ retval : : NRF_ERROR_INVALID_ADDR This function can not write to the reguested register .
* @ retval : : NRF_SUCCESS Value successfully written to register .
*
*/
SVCALL ( SD_PROTECTED_REGISTER_WRITE , uint32_t , sd_protected_register_write ( volatile uint32_t * p_register , uint32_t value ) ) ;
/**@} */
# ifdef __cplusplus
}
# endif
# endif // NRF_SOC_H__
/**@} */