simmel-bootloader/lib/sdk/components/drivers_nrf/hal/nrf_usbd.h

1436 lines
52 KiB
C
Raw Normal View History

2018-02-09 16:06:27 +00:00
/**
* Copyright (c) 2017 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_USBD_H__
#define NRF_USBD_H__
/**
* @ingroup nrf_drivers
* @defgroup nrf_usbd_hal USBD HAL
* @{
*
* @brief @tagAPI52840 Hardware access layer for Universal Serial Bus Device (USBD) peripheral.
*/
#include "nrf_peripherals.h"
#include "nrf.h"
#include "nrf_assert.h"
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief USBD tasks
*/
typedef enum
{
/*lint -save -e30*/
NRF_USBD_TASK_STARTEPIN0 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[0] ), /**< Captures the EPIN[0].PTR, EPIN[0].MAXCNT and EPIN[0].CONFIG registers values, and enables control endpoint IN 0 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN1 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[1] ), /**< Captures the EPIN[1].PTR, EPIN[1].MAXCNT and EPIN[1].CONFIG registers values, and enables data endpoint IN 1 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN2 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[2] ), /**< Captures the EPIN[2].PTR, EPIN[2].MAXCNT and EPIN[2].CONFIG registers values, and enables data endpoint IN 2 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN3 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[3] ), /**< Captures the EPIN[3].PTR, EPIN[3].MAXCNT and EPIN[3].CONFIG registers values, and enables data endpoint IN 3 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN4 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[4] ), /**< Captures the EPIN[4].PTR, EPIN[4].MAXCNT and EPIN[4].CONFIG registers values, and enables data endpoint IN 4 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN5 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[5] ), /**< Captures the EPIN[5].PTR, EPIN[5].MAXCNT and EPIN[5].CONFIG registers values, and enables data endpoint IN 5 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN6 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[6] ), /**< Captures the EPIN[6].PTR, EPIN[6].MAXCNT and EPIN[6].CONFIG registers values, and enables data endpoint IN 6 to respond to traffic from host */
NRF_USBD_TASK_STARTEPIN7 = offsetof(NRF_USBD_Type, TASKS_STARTEPIN[7] ), /**< Captures the EPIN[7].PTR, EPIN[7].MAXCNT and EPIN[7].CONFIG registers values, and enables data endpoint IN 7 to respond to traffic from host */
NRF_USBD_TASK_STARTISOIN = offsetof(NRF_USBD_Type, TASKS_STARTISOIN ), /**< Captures the ISOIN.PTR, ISOIN.MAXCNT and ISOIN.CONFIG registers values, and enables sending data on iso endpoint 8 */
NRF_USBD_TASK_STARTEPOUT0 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[0]), /**< Captures the EPOUT[0].PTR, EPOUT[0].MAXCNT and EPOUT[0].CONFIG registers values, and enables control endpoint 0 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT1 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[1]), /**< Captures the EPOUT[1].PTR, EPOUT[1].MAXCNT and EPOUT[1].CONFIG registers values, and enables data endpoint 1 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT2 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[2]), /**< Captures the EPOUT[2].PTR, EPOUT[2].MAXCNT and EPOUT[2].CONFIG registers values, and enables data endpoint 2 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT3 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[3]), /**< Captures the EPOUT[3].PTR, EPOUT[3].MAXCNT and EPOUT[3].CONFIG registers values, and enables data endpoint 3 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT4 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[4]), /**< Captures the EPOUT[4].PTR, EPOUT[4].MAXCNT and EPOUT[4].CONFIG registers values, and enables data endpoint 4 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT5 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[5]), /**< Captures the EPOUT[5].PTR, EPOUT[5].MAXCNT and EPOUT[5].CONFIG registers values, and enables data endpoint 5 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT6 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[6]), /**< Captures the EPOUT[6].PTR, EPOUT[6].MAXCNT and EPOUT[6].CONFIG registers values, and enables data endpoint 6 to respond to traffic from host */
NRF_USBD_TASK_STARTEPOUT7 = offsetof(NRF_USBD_Type, TASKS_STARTEPOUT[7]), /**< Captures the EPOUT[7].PTR, EPOUT[7].MAXCNT and EPOUT[7].CONFIG registers values, and enables data endpoint 7 to respond to traffic from host */
NRF_USBD_TASK_STARTISOOUT = offsetof(NRF_USBD_Type, TASKS_STARTISOOUT ), /**< Captures the ISOOUT.PTR, ISOOUT.MAXCNT and ISOOUT.CONFIG registers values, and enables receiving of data on iso endpoint 8 */
NRF_USBD_TASK_EP0RCVOUT = offsetof(NRF_USBD_Type, TASKS_EP0RCVOUT ), /**< Allows OUT data stage on control endpoint 0 */
NRF_USBD_TASK_EP0STATUS = offsetof(NRF_USBD_Type, TASKS_EP0STATUS ), /**< Allows status stage on control endpoint 0 */
NRF_USBD_TASK_EP0STALL = offsetof(NRF_USBD_Type, TASKS_EP0STALL ), /**< STALLs data and status stage on control endpoint 0 */
NRF_USBD_TASK_DRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMDRIVE ), /**< Forces D+ and D-lines to the state defined in the DPDMVALUE register */
NRF_USBD_TASK_NODRIVEDPDM = offsetof(NRF_USBD_Type, TASKS_DPDMNODRIVE ), /**< Stops forcing D+ and D- lines to any state (USB engine takes control) */
/*lint -restore*/
}nrf_usbd_task_t;
/**
* @brief USBD events
*/
typedef enum
{
/*lint -save -e30*/
NRF_USBD_EVENT_USBRESET = offsetof(NRF_USBD_Type, EVENTS_USBRESET ), /**< Signals that a USB reset condition has been detected on the USB lines */
NRF_USBD_EVENT_STARTED = offsetof(NRF_USBD_Type, EVENTS_STARTED ), /**< Confirms that the EPIN[n].PTR, EPIN[n].MAXCNT, EPIN[n].CONFIG, or EPOUT[n].PTR, EPOUT[n].MAXCNT and EPOUT[n].CONFIG registers have been captured on all endpoints reported in the EPSTATUS register */
NRF_USBD_EVENT_ENDEPIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[0] ), /**< The whole EPIN[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[1] ), /**< The whole EPIN[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[2] ), /**< The whole EPIN[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[3] ), /**< The whole EPIN[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[4] ), /**< The whole EPIN[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[5] ), /**< The whole EPIN[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[6] ), /**< The whole EPIN[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPIN7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPIN[7] ), /**< The whole EPIN[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_EP0DATADONE = offsetof(NRF_USBD_Type, EVENTS_EP0DATADONE), /**< An acknowledged data transfer has taken place on the control endpoint */
NRF_USBD_EVENT_ENDISOIN0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOIN ), /**< The whole ISOIN buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[0]), /**< The whole EPOUT[0] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT1 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[1]), /**< The whole EPOUT[1] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT2 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[2]), /**< The whole EPOUT[2] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT3 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[3]), /**< The whole EPOUT[3] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT4 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[4]), /**< The whole EPOUT[4] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT5 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[5]), /**< The whole EPOUT[5] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT6 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[6]), /**< The whole EPOUT[6] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDEPOUT7 = offsetof(NRF_USBD_Type, EVENTS_ENDEPOUT[7]), /**< The whole EPOUT[7] buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_ENDISOOUT0 = offsetof(NRF_USBD_Type, EVENTS_ENDISOOUT ), /**< The whole ISOOUT buffer has been consumed. The RAM buffer can be accessed safely by software. */
NRF_USBD_EVENT_SOF = offsetof(NRF_USBD_Type, EVENTS_SOF ), /**< Signals that a SOF (start of frame) condition has been detected on the USB lines */
NRF_USBD_EVENT_USBEVENT = offsetof(NRF_USBD_Type, EVENTS_USBEVENT ), /**< An event or an error not covered by specific events has occurred, check EVENTCAUSE register to find the cause */
NRF_USBD_EVENT_EP0SETUP = offsetof(NRF_USBD_Type, EVENTS_EP0SETUP ), /**< A valid SETUP token has been received (and acknowledged) on the control endpoint */
NRF_USBD_EVENT_DATAEP = offsetof(NRF_USBD_Type, EVENTS_EPDATA ), /**< A data transfer has occurred on a data endpoint, indicated by the EPDATASTATUS register */
NRF_USBD_EVENT_ACCESSFAULT = offsetof(NRF_USBD_Type, EVENTS_ACCESSFAULT), /**< >Access to an unavailable USB register has been attempted (software or EasyDMA) */
/*lint -restore*/
}nrf_usbd_event_t;
/**
* @brief USBD shorts
*/
typedef enum
{
NRF_USBD_SHORT_EP0DATADONE_STARTEPIN0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPIN0_Msk , /**< Shortcut between EP0DATADONE event and STARTEPIN0 task */
NRF_USBD_SHORT_EP0DATADONE_STARTEPOUT0_MASK = USBD_SHORTS_EP0DATADONE_STARTEPOUT0_Msk, /**< Shortcut between EP0DATADONE event and STARTEPOUT0 task */
NRF_USBD_SHORT_EP0DATADONE_EP0STATUS_MASK = USBD_SHORTS_EP0DATADONE_EP0STATUS_Msk , /**< Shortcut between EP0DATADONE event and EP0STATUS task */
NRF_USBD_SHORT_ENDEPOUT0_EP0STATUS_MASK = USBD_SHORTS_ENDEPOUT0_EP0STATUS_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0STATUS task */
NRF_USBD_SHORT_ENDEPOUT0_EP0RCVOUT_MASK = USBD_SHORTS_ENDEPOUT0_EP0RCVOUT_Msk , /**< Shortcut between ENDEPOUT[0] event and EP0RCVOUT task */
}nrf_usbd_short_mask_t;
/**
* @brief USBD interrupts
*/
typedef enum
{
NRF_USBD_INT_USBRESET_MASK = USBD_INTEN_USBRESET_Msk , /**< Enable or disable interrupt for USBRESET event */
NRF_USBD_INT_STARTED_MASK = USBD_INTEN_STARTED_Msk , /**< Enable or disable interrupt for STARTED event */
NRF_USBD_INT_ENDEPIN0_MASK = USBD_INTEN_ENDEPIN0_Msk , /**< Enable or disable interrupt for ENDEPIN[0] event */
NRF_USBD_INT_ENDEPIN1_MASK = USBD_INTEN_ENDEPIN1_Msk , /**< Enable or disable interrupt for ENDEPIN[1] event */
NRF_USBD_INT_ENDEPIN2_MASK = USBD_INTEN_ENDEPIN2_Msk , /**< Enable or disable interrupt for ENDEPIN[2] event */
NRF_USBD_INT_ENDEPIN3_MASK = USBD_INTEN_ENDEPIN3_Msk , /**< Enable or disable interrupt for ENDEPIN[3] event */
NRF_USBD_INT_ENDEPIN4_MASK = USBD_INTEN_ENDEPIN4_Msk , /**< Enable or disable interrupt for ENDEPIN[4] event */
NRF_USBD_INT_ENDEPIN5_MASK = USBD_INTEN_ENDEPIN5_Msk , /**< Enable or disable interrupt for ENDEPIN[5] event */
NRF_USBD_INT_ENDEPIN6_MASK = USBD_INTEN_ENDEPIN6_Msk , /**< Enable or disable interrupt for ENDEPIN[6] event */
NRF_USBD_INT_ENDEPIN7_MASK = USBD_INTEN_ENDEPIN7_Msk , /**< Enable or disable interrupt for ENDEPIN[7] event */
NRF_USBD_INT_EP0DATADONE_MASK = USBD_INTEN_EP0DATADONE_Msk, /**< Enable or disable interrupt for EP0DATADONE event */
NRF_USBD_INT_ENDISOIN0_MASK = USBD_INTEN_ENDISOIN_Msk , /**< Enable or disable interrupt for ENDISOIN[0] event */
NRF_USBD_INT_ENDEPOUT0_MASK = USBD_INTEN_ENDEPOUT0_Msk , /**< Enable or disable interrupt for ENDEPOUT[0] event */
NRF_USBD_INT_ENDEPOUT1_MASK = USBD_INTEN_ENDEPOUT1_Msk , /**< Enable or disable interrupt for ENDEPOUT[1] event */
NRF_USBD_INT_ENDEPOUT2_MASK = USBD_INTEN_ENDEPOUT2_Msk , /**< Enable or disable interrupt for ENDEPOUT[2] event */
NRF_USBD_INT_ENDEPOUT3_MASK = USBD_INTEN_ENDEPOUT3_Msk , /**< Enable or disable interrupt for ENDEPOUT[3] event */
NRF_USBD_INT_ENDEPOUT4_MASK = USBD_INTEN_ENDEPOUT4_Msk , /**< Enable or disable interrupt for ENDEPOUT[4] event */
NRF_USBD_INT_ENDEPOUT5_MASK = USBD_INTEN_ENDEPOUT5_Msk , /**< Enable or disable interrupt for ENDEPOUT[5] event */
NRF_USBD_INT_ENDEPOUT6_MASK = USBD_INTEN_ENDEPOUT6_Msk , /**< Enable or disable interrupt for ENDEPOUT[6] event */
NRF_USBD_INT_ENDEPOUT7_MASK = USBD_INTEN_ENDEPOUT7_Msk , /**< Enable or disable interrupt for ENDEPOUT[7] event */
NRF_USBD_INT_ENDISOOUT0_MASK = USBD_INTEN_ENDISOOUT_Msk , /**< Enable or disable interrupt for ENDISOOUT[0] event */
NRF_USBD_INT_SOF_MASK = USBD_INTEN_SOF_Msk , /**< Enable or disable interrupt for SOF event */
NRF_USBD_INT_USBEVENT_MASK = USBD_INTEN_USBEVENT_Msk , /**< Enable or disable interrupt for USBEVENT event */
NRF_USBD_INT_EP0SETUP_MASK = USBD_INTEN_EP0SETUP_Msk , /**< Enable or disable interrupt for EP0SETUP event */
NRF_USBD_INT_DATAEP_MASK = USBD_INTEN_EPDATA_Msk , /**< Enable or disable interrupt for EPDATA event */
NRF_USBD_INT_ACCESSFAULT_MASK = USBD_INTEN_ACCESSFAULT_Msk, /**< Enable or disable interrupt for ACCESSFAULT event */
}nrf_usbd_int_mask_t;
/**
* @brief Function for activating a specific USBD task.
*
* @param task Task.
*/
__STATIC_INLINE void nrf_usbd_task_trigger(nrf_usbd_task_t task);
/**
* @brief Function for returning the address of a specific USBD task register.
*
* @param task Task.
*
* @return Task address.
*/
__STATIC_INLINE uint32_t nrf_usbd_task_address_get(nrf_usbd_task_t task);
/**
* @brief Function for clearing a specific event.
*
* @param event Event.
*/
__STATIC_INLINE void nrf_usbd_event_clear(nrf_usbd_event_t event);
/**
* @brief Function for returning the state of a specific event.
*
* @param event Event.
*
* @retval true If the event is set.
* @retval false If the event is not set.
*/
__STATIC_INLINE bool nrf_usbd_event_check(nrf_usbd_event_t event);
/**
* @brief Function for getting and clearing the state of specific event
*
* This function checks the state of the event and clears it.
*
* @param event Event.
*
* @retval true If the event was set.
* @retval false If the event was not set.
*/
__STATIC_INLINE bool nrf_usbd_event_get_and_clear(nrf_usbd_event_t event);
/**
* @brief Function for returning the address of a specific USBD event register.
*
* @param event Event.
*
* @return Address.
*/
__STATIC_INLINE uint32_t nrf_usbd_event_address_get(nrf_usbd_event_t event);
/**
* @brief Function for setting a shortcut.
*
* @param short_mask Shortcuts mask.
*/
__STATIC_INLINE void nrf_usbd_shorts_enable(uint32_t short_mask);
/**
* @brief Function for clearing shortcuts.
*
* @param short_mask Shortcuts mask.
*/
__STATIC_INLINE void nrf_usbd_shorts_disable(uint32_t short_mask);
/**
* @brief Get the shorts mask
*
* Function returns shorts register.
*
* @return Flags of currently enabled shortcuts
*/
__STATIC_INLINE uint32_t nrf_usbd_shorts_get(void);
/**
* @brief Function for enabling selected interrupts.
*
* @param int_mask Interrupts mask.
*/
__STATIC_INLINE void nrf_usbd_int_enable(uint32_t int_mask);
/**
* @brief Function for retrieving the state of selected interrupts.
*
* @param int_mask Interrupts mask.
*
* @retval true If any of selected interrupts is enabled.
* @retval false If none of selected interrupts is enabled.
*/
__STATIC_INLINE bool nrf_usbd_int_enable_check(uint32_t int_mask);
/**
* @brief Function for retrieving the information about enabled interrupts.
*
* @return The flags of enabled interrupts.
*/
__STATIC_INLINE uint32_t nrf_usbd_int_enable_get(void);
/**
* @brief Function for disabling selected interrupts.
*
* @param int_mask Interrupts mask.
*/
__STATIC_INLINE void nrf_usbd_int_disable(uint32_t int_mask);
/** @} */ /* End of nrf_usbd_hal */
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
/* ------------------------------------------------------------------------------------------------
* Internal functions
*/
/**
* @internal
* @brief Internal function for getting task/event register address
*
* @oaram offset Offset of the register from the instance beginning
*
* @attention offset has to be modulo 4 value. In other case we can get hardware fault.
* @return Pointer to the register
*/
__STATIC_INLINE volatile uint32_t* nrf_usbd_getRegPtr(uint32_t offset)
{
return (volatile uint32_t*)(((uint8_t *)NRF_USBD) + (uint32_t)offset);
}
/**
* @internal
* @brief Internal function for getting task/event register address - constant version
*
* @oaram offset Offset of the register from the instance beginning
*
* @attention offset has to be modulo 4 value. In other case we can get hardware fault.
* @return Pointer to the register
*/
__STATIC_INLINE volatile const uint32_t* nrf_usbd_getRegPtr_c(uint32_t offset)
{
return (volatile const uint32_t*)(((uint8_t *)NRF_USBD) + (uint32_t)offset);
}
/* ------------------------------------------------------------------------------------------------
* Interface functions definitions
*/
void nrf_usbd_task_trigger(nrf_usbd_task_t task)
{
*(nrf_usbd_getRegPtr((uint32_t)task)) = 1UL;
__ISB();
__DSB();
}
uint32_t nrf_usbd_task_address_get(nrf_usbd_task_t task)
{
return (uint32_t)nrf_usbd_getRegPtr_c((uint32_t)task);
}
void nrf_usbd_event_clear(nrf_usbd_event_t event)
{
*(nrf_usbd_getRegPtr((uint32_t)event)) = 0UL;
__ISB();
__DSB();
}
bool nrf_usbd_event_check(nrf_usbd_event_t event)
{
return (bool)*nrf_usbd_getRegPtr_c((uint32_t)event);
}
bool nrf_usbd_event_get_and_clear(nrf_usbd_event_t event)
{
bool ret = nrf_usbd_event_check(event);
if (ret)
{
nrf_usbd_event_clear(event);
}
return ret;
}
uint32_t nrf_usbd_event_address_get(nrf_usbd_event_t event)
{
return (uint32_t)nrf_usbd_getRegPtr_c((uint32_t)event);
}
void nrf_usbd_shorts_enable(uint32_t short_mask)
{
NRF_USBD->SHORTS |= short_mask;
}
void nrf_usbd_shorts_disable(uint32_t short_mask)
{
if (~0U == short_mask)
{
/* Optimized version for "disable all" */
NRF_USBD->SHORTS = 0;
}
else
{
NRF_USBD->SHORTS &= ~short_mask;
}
}
uint32_t nrf_usbd_shorts_get(void)
{
return NRF_USBD->SHORTS;
}
void nrf_usbd_int_enable(uint32_t int_mask)
{
NRF_USBD->INTENSET = int_mask;
}
bool nrf_usbd_int_enable_check(uint32_t int_mask)
{
return !!(NRF_USBD->INTENSET & int_mask);
}
uint32_t nrf_usbd_int_enable_get(void)
{
return NRF_USBD->INTENSET;
}
void nrf_usbd_int_disable(uint32_t int_mask)
{
NRF_USBD->INTENCLR = int_mask;
}
#endif /* SUPPRESS_INLINE_IMPLEMENTATION */
/* ------------------------------------------------------------------------------------------------
* End of automatically generated part
* ------------------------------------------------------------------------------------------------
*/
/**
* @addtogroup nrf_usbd_hal
* @{
*/
/**
* @brief Frame counter size
*
* The number of counts that can be fitted into frame counter
*/
#define NRF_USBD_FRAMECNTR_SIZE \
( (USBD_FRAMECNTR_FRAMECNTR_Msk >> USBD_FRAMECNTR_FRAMECNTR_Pos) + 1UL )
#ifndef USBD_FRAMECNTR_FRAMECNTR_Msk
#error USBD_FRAMECNTR_FRAMECNTR_Msk should be changed into USBD_FRAMECNTR_FRAMECNTR_Msk
#endif
/**
* @brief First isochronous endpoint number
*
* The number of the first isochronous endpoint
*/
#define NRF_USBD_EPISO_FIRST 8
/**
* @brief Total number of IN endpoints
*
* Total number of IN endpoint (including ISOCHRONOUS).
*/
#define NRF_USBD_EPIN_CNT 9
/**
* @brief Total number of OUT endpoints
*
* Total number of OUT endpoint (including ISOCHRONOUS).
*/
#define NRF_USBD_EPOUT_CNT 9
/**
* @brief Mask of the direction bit in endpoint number
*/
#define NRF_USBD_EP_DIR_Msk (1U << 7)
/**
* @brief The value of direction bit for IN endpoint direction
*/
#define NRF_USBD_EP_DIR_IN (1U << 7)
/**
* @brief The value of direction bit for OUT endpoint direction
*/
#define NRF_USBD_EP_DIR_OUT (0U << 7)
/**
* @brief Macro for making IN endpoint identifier from endpoint number
*
* Macro that sets direction bit to make IN endpoint
* @param[in] epnr Endpoint number
* @return IN Endpoint identifier
*/
#define NRF_USBD_EPIN(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_IN)
/**
* @brief Macro for making OUT endpoint identifier from endpoint number
*
* Macro that sets direction bit to make OUT endpoint
* @param[in] epnr Endpoint number
* @return OUT Endpoint identifier
*/
#define NRF_USBD_EPOUT(epnr) (((uint8_t)(epnr)) | NRF_USBD_EP_DIR_OUT)
/**
* @brief Macro for extracting the endpoint number from endpoint identifier
*
* Macro that strips out the information about endpoint direction.
* @param[in] ep Endpoint identifier
* @return Endpoint number
*/
#define NRF_USBD_EP_NR_GET(ep) ((uint8_t)(((uint8_t)(ep)) & 0xFU))
/**
* @brief Macro for checking endpoint direction
*
* This macro checks if given endpoint has IN direction
* @param ep Endpoint identifier
* @retval true If the endpoint direction is IN
* @retval false If the endpoint direction is OUT
*/
#define NRF_USBD_EPIN_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_IN )
/**
* @brief Macro for checking endpoint direction
*
* This macro checks if given endpoint has OUT direction
* @param ep Endpoint identifier
* @retval true If the endpoint direction is OUT
* @retval false If the endpoint direction is IN
*/
#define NRF_USBD_EPOUT_CHECK(ep) ( (((uint8_t)(ep)) & NRF_USBD_EP_DIR_Msk) == NRF_USBD_EP_DIR_OUT )
/**
* @brief Macro for checking if endpoint is isochronous
*
* @param ep It can be endpoint identifier or just endpoint number to check
* @retval true The endpoint is isochronous type
* @retval false The endpoint is bulk of interrupt type
*/
#define NRF_USBD_EPISO_CHECK(ep) (NRF_USBD_EP_NR_GET(ep) >= NRF_USBD_EPISO_FIRST)
/**
* @brief Macro for checking if given number is valid endpoint number
*
* @param ep Endpoint number to check
* @retval true The endpoint is valid
* @retval false The endpoint is not valid
*/
#define NRF_USBD_EP_VALIDATE(ep) ( \
(NRF_USBD_EPIN_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPIN_CNT)) \
|| \
(NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPOUT_CNT)) \
)
/**
* @brief Not isochronous data frame received
*
* Special value returned by @ref nrf_usbd_episoout_size_get function that means that
* data frame was not received at all.
* This allows differentiate between situations when zero size data comes or no data comes at all
* on isochronous endpoint.
*/
#define NRF_USBD_EPISOOUT_NO_DATA ((size_t)(-1))
/**
* @brief EVENTCAUSE register bit masks
*/
typedef enum
{
NRF_USBD_EVENTCAUSE_ISOOUTCRC_MASK = USBD_EVENTCAUSE_ISOOUTCRC_Msk, /**< CRC error was detected on isochronous OUT endpoint 8. */
NRF_USBD_EVENTCAUSE_SUSPEND_MASK = USBD_EVENTCAUSE_SUSPEND_Msk , /**< Signals that the USB lines have been seen idle long enough for the device to enter suspend. */
NRF_USBD_EVENTCAUSE_RESUME_MASK = USBD_EVENTCAUSE_RESUME_Msk , /**< Signals that a RESUME condition (K state or activity restart) has been detected on the USB lines. */
NRF_USBD_EVENTCAUSE_READY_MASK = USBD_EVENTCAUSE_READY_Msk, /**< MAC is ready for normal operation, rised few us after USBD enabling */
NRF_USBD_EVENTCAUSE_WUREQ_MASK = (1U << 10) /**< The USBD peripheral has exited Low Power mode */
}nrf_usbd_eventcause_mask_t;
/**
* @brief BUSSTATE register bit masks
*/
typedef enum
{
NRF_USBD_BUSSTATE_DM_MASK = USBD_BUSSTATE_DM_Msk, /**< Negative line mask */
NRF_USBD_BUSSTATE_DP_MASK = USBD_BUSSTATE_DP_Msk, /**< Positive line mask */
/** Both lines are low */
NRF_USBD_BUSSTATE_DPDM_LL = (USBD_BUSSTATE_DM_Low << USBD_BUSSTATE_DM_Pos) | (USBD_BUSSTATE_DP_Low << USBD_BUSSTATE_DP_Pos),
/** Positive line is high, negative line is low */
NRF_USBD_BUSSTATE_DPDM_HL = (USBD_BUSSTATE_DM_Low << USBD_BUSSTATE_DM_Pos) | (USBD_BUSSTATE_DP_High << USBD_BUSSTATE_DP_Pos),
/** Positive line is low, negative line is high */
NRF_USBD_BUSSTATE_DPDM_LH = (USBD_BUSSTATE_DM_High << USBD_BUSSTATE_DM_Pos) | (USBD_BUSSTATE_DP_Low << USBD_BUSSTATE_DP_Pos),
/** Both lines are high */
NRF_USBD_BUSSTATE_DPDM_HH = (USBD_BUSSTATE_DM_High << USBD_BUSSTATE_DM_Pos) | (USBD_BUSSTATE_DP_High << USBD_BUSSTATE_DP_Pos),
/** J state */
NRF_USBD_BUSSTATE_J = NRF_USBD_BUSSTATE_DPDM_HL,
/** K state */
NRF_USBD_BUSSTATE_K = NRF_USBD_BUSSTATE_DPDM_LH,
/** Single ended 0 */
NRF_USBD_BUSSTATE_SE0 = NRF_USBD_BUSSTATE_DPDM_LL,
/** Single ended 1 */
NRF_USBD_BUSSTATE_SE1 = NRF_USBD_BUSSTATE_DPDM_HH
}nrf_usbd_busstate_t;
/**
* @brief DPDMVALUE register
*/
typedef enum
{
/**Generate Resume signal. Signal is generated for 50&nbsp;us or 5&nbsp;ms,
* depending on bus state */
NRF_USBD_DPDMVALUE_RESUME = USBD_DPDMVALUE_STATE_Resume,
/** D+ Forced high, D- forced low (J state) */
NRF_USBD_DPDMVALUE_J = USBD_DPDMVALUE_STATE_J,
/** D+ Forced low, D- forced high (K state) */
NRF_USBD_DPMVALUE_K = USBD_DPDMVALUE_STATE_K
}nrf_usbd_dpdmvalue_t;
/**
* @brief Dtoggle value or operation
*/
typedef enum
{
NRF_USBD_DTOGGLE_NOP = USBD_DTOGGLE_VALUE_Nop, /**< No operation - do not change current data toggle on selected endpoint */
NRF_USBD_DTOGGLE_DATA0 = USBD_DTOGGLE_VALUE_Data0,/**< Data toggle is DATA0 on selected endpoint */
NRF_USBD_DTOGGLE_DATA1 = USBD_DTOGGLE_VALUE_Data1 /**< Data toggle is DATA1 on selected endpoint */
}nrf_usbd_dtoggle_t;
/**
* @brief EPSTATUS bit masks
*/
typedef enum
{
NRF_USBD_EPSTATUS_EPIN0_MASK = USBD_EPSTATUS_EPIN0_Msk,
NRF_USBD_EPSTATUS_EPIN1_MASK = USBD_EPSTATUS_EPIN1_Msk,
NRF_USBD_EPSTATUS_EPIN2_MASK = USBD_EPSTATUS_EPIN2_Msk,
NRF_USBD_EPSTATUS_EPIN3_MASK = USBD_EPSTATUS_EPIN3_Msk,
NRF_USBD_EPSTATUS_EPIN4_MASK = USBD_EPSTATUS_EPIN4_Msk,
NRF_USBD_EPSTATUS_EPIN5_MASK = USBD_EPSTATUS_EPIN5_Msk,
NRF_USBD_EPSTATUS_EPIN6_MASK = USBD_EPSTATUS_EPIN6_Msk,
NRF_USBD_EPSTATUS_EPIN7_MASK = USBD_EPSTATUS_EPIN7_Msk,
NRF_USBD_EPSTATUS_EPOUT0_MASK = USBD_EPSTATUS_EPOUT0_Msk,
NRF_USBD_EPSTATUS_EPOUT1_MASK = USBD_EPSTATUS_EPOUT1_Msk,
NRF_USBD_EPSTATUS_EPOUT2_MASK = USBD_EPSTATUS_EPOUT2_Msk,
NRF_USBD_EPSTATUS_EPOUT3_MASK = USBD_EPSTATUS_EPOUT3_Msk,
NRF_USBD_EPSTATUS_EPOUT4_MASK = USBD_EPSTATUS_EPOUT4_Msk,
NRF_USBD_EPSTATUS_EPOUT5_MASK = USBD_EPSTATUS_EPOUT5_Msk,
NRF_USBD_EPSTATUS_EPOUT6_MASK = USBD_EPSTATUS_EPOUT6_Msk,
NRF_USBD_EPSTATUS_EPOUT7_MASK = USBD_EPSTATUS_EPOUT7_Msk,
}nrf_usbd_epstatus_mask_t;
/**
* @brief DATAEPSTATUS bit masks
*/
typedef enum
{
NRF_USBD_EPDATASTATUS_EPIN1_MASK = USBD_EPDATASTATUS_EPIN1_Msk,
NRF_USBD_EPDATASTATUS_EPIN2_MASK = USBD_EPDATASTATUS_EPIN2_Msk,
NRF_USBD_EPDATASTATUS_EPIN3_MASK = USBD_EPDATASTATUS_EPIN3_Msk,
NRF_USBD_EPDATASTATUS_EPIN4_MASK = USBD_EPDATASTATUS_EPIN4_Msk,
NRF_USBD_EPDATASTATUS_EPIN5_MASK = USBD_EPDATASTATUS_EPIN5_Msk,
NRF_USBD_EPDATASTATUS_EPIN6_MASK = USBD_EPDATASTATUS_EPIN6_Msk,
NRF_USBD_EPDATASTATUS_EPIN7_MASK = USBD_EPDATASTATUS_EPIN7_Msk,
NRF_USBD_EPDATASTATUS_EPOUT1_MASK = USBD_EPDATASTATUS_EPOUT1_Msk,
NRF_USBD_EPDATASTATUS_EPOUT2_MASK = USBD_EPDATASTATUS_EPOUT2_Msk,
NRF_USBD_EPDATASTATUS_EPOUT3_MASK = USBD_EPDATASTATUS_EPOUT3_Msk,
NRF_USBD_EPDATASTATUS_EPOUT4_MASK = USBD_EPDATASTATUS_EPOUT4_Msk,
NRF_USBD_EPDATASTATUS_EPOUT5_MASK = USBD_EPDATASTATUS_EPOUT5_Msk,
NRF_USBD_EPDATASTATUS_EPOUT6_MASK = USBD_EPDATASTATUS_EPOUT6_Msk,
NRF_USBD_EPDATASTATUS_EPOUT7_MASK = USBD_EPDATASTATUS_EPOUT7_Msk,
}nrf_usbd_dataepstatus_mask_t;
/**
* @brief ISOSPLIT configurations
*/
typedef enum
{
NRF_USBD_ISOSPLIT_OneDir = USBD_ISOSPLIT_SPLIT_OneDir, /**< Full buffer dedicated to either iso IN or OUT */
NRF_USBD_ISOSPLIT_Half = USBD_ISOSPLIT_SPLIT_HalfIN, /**< Buffer divided in half */
}nrf_usbd_isosplit_t;
/**
* @brief Function for enabling USBD
*/
__STATIC_INLINE void nrf_usbd_enable(void);
/**
* @brief Function for disabling USBD
*/
__STATIC_INLINE void nrf_usbd_disable(void);
/**
* @brief Function for getting EVENTCAUSE register
*
* @return Flag values defined in @ref nrf_usbd_eventcause_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_eventcause_get(void);
/**
* @brief Function for clearing EVENTCAUSE flags
*
* @param flags Flags defined in @ref nrf_usbd_eventcause_mask_t
*/
__STATIC_INLINE void nrf_usbd_eventcause_clear(uint32_t flags);
/**
* @brief Function for getting EVENTCAUSE register and clear flags that are set
*
* The safest way to return current EVENTCAUSE register.
* All the flags that are returned would be cleared inside EVENTCAUSE register.
*
* @return Flag values defined in @ref nrf_usbd_eventcause_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_eventcause_get_and_clear(void);
/**
* @brief Function for getting BUSSTATE register value
*
* @return The value of BUSSTATE register
*/
__STATIC_INLINE nrf_usbd_busstate_t nrf_usbd_busstate_get(void);
/**
* @brief Function for getting HALTEDEPIN register value
*
* @param ep Endpoint number with IN/OUT flag
*
* @return The value of HALTEDEPIN or HALTEDOUT register for selected endpoint
*
* @note
* Use this function for the response for GetStatus() request to endpoint.
* To check if endpoint is stalled in the code use @ref nrf_usbd_ep_is_stall.
*/
__STATIC_INLINE uint32_t nrf_usbd_haltedep(uint8_t ep);
/**
* @brief Function for checking if selected endpoint is stalled
*
* Function to be used as a syntax sweeter for @ref nrf_usbd_haltedep.
*
* Also as the isochronous endpoint cannot be halted - it returns always false
* if isochronous endpoint is checked.
*
* @param ep Endpoint number with IN/OUT flag
*
* @return The information if the enepoint is halted.
*/
__STATIC_INLINE bool nrf_usbd_ep_is_stall(uint8_t ep);
/**
* @brief Function for getting EPSTATUS register value
*
* @return Flag values defined in @ref nrf_usbd_epstatus_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_epstatus_get(void);
/**
* @brief Function for clearing EPSTATUS register value
*
* @param flags Flags defined in @ref nrf_usbd_epstatus_mask_t
*/
__STATIC_INLINE void nrf_usbd_epstatus_clear(uint32_t flags);
/**
* @brief Function for getting and clearing EPSTATUS register value
*
* Function clears all flags in register set before returning its value.
* @return Flag values defined in @ref nrf_usbd_epstatus_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_epstatus_get_and_clear(void);
/**
* @brief Function for getting DATAEPSTATUS register value
*
* @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get(void);
/**
* @brief Function for clearing DATAEPSTATUS register value
*
* @param flags Flags defined in @ref nrf_usbd_dataepstatus_mask_t
*/
__STATIC_INLINE void nrf_usbd_epdatastatus_clear(uint32_t flags);
/**
* @brief Function for getting and clearing DATAEPSTATUS register value
*
* Function clears all flags in register set before returning its value.
* @return Flag values defined in @ref nrf_usbd_dataepstatus_mask_t
*/
__STATIC_INLINE uint32_t nrf_usbd_epdatastatus_get_and_clear(void);
/**
* @name Setup command frame functions
*
* Functions for setup command frame parts access
* @{
*/
/**
* @brief Function for reading BMREQUESTTYPE - part of SETUP packet
*
* @return the value of BREQUESTTYPE on last received SETUP frame
*/
__STATIC_INLINE uint8_t nrf_usbd_setup_bmrequesttype_get(void);
/**
* @brief Function for reading BMREQUEST - part of SETUP packet
*
* @return the value of BREQUEST on last received SETUP frame
*/
__STATIC_INLINE uint8_t nrf_usbd_setup_brequest_get(void);
/**
* @brief Function for reading WVALUE - part of SETUP packet
*
* @return the value of WVALUE on last received SETUP frame
*/
__STATIC_INLINE uint16_t nrf_usbd_setup_wvalue_get(void);
/**
* @brief Function for reading WINDEX - part of SETUP packet
*
* @return the value of WINDEX on last received SETUP frame
*/
__STATIC_INLINE uint16_t nrf_usbd_setup_windex_get(void);
/**
* @brief Function for reading WLENGTH - part of SETUP packet
*
* @return the value of WLENGTH on last received SETUP frame
*/
__STATIC_INLINE uint16_t nrf_usbd_setup_wlength_get(void);
/** @} */
/**
* @brief Function for getting number of received bytes on selected endpoint
*
* @param ep Endpoint identifier.
*
* @return Number of received bytes.
*
* @note This function may be used on Bulk/Interrupt and Isochronous endpoints.
* @note For the function that returns different value for ISOOUT zero transfer or no transfer at all,
* see @ref nrf_usbd_episoout_size_get function. This function would return 0 for both cases.
*/
__STATIC_INLINE size_t nrf_usbd_epout_size_get(uint8_t ep);
/**
* @brief Function for getting number of received bytes on isochronous endpoint.
*
* @param ep Endpoint identifier, has to be isochronous out endpoint.
*
* @return Number of bytes received or @ref NRF_USBD_EPISOOUT_NO_DATA
*/
__STATIC_INLINE size_t nrf_usbd_episoout_size_get(uint8_t ep);
/**
* @brief Function for clearing out endpoint to accept any new incoming traffic
*
* @param ep ep Endpoint identifier. Only OUT Interrupt/Bulk endpoints are accepted.
*/
__STATIC_INLINE void nrf_usbd_epout_clear(uint8_t ep);
/**
* @brief Function for enabling USB pullup
*/
__STATIC_INLINE void nrf_usbd_pullup_enable(void);
/**
* @brief Function for disabling USB pullup
*/
__STATIC_INLINE void nrf_usbd_pullup_disable(void);
/**
* @brief Function for returning current USB pullup state
*
* @retval true USB pullup is enabled
* @retval false USB pullup is disabled
*/
__STATIC_INLINE bool nrf_usbd_pullup_check(void);
/**
* @brief Function for configuring the value to be forced on the bus on DRIVEDPDM task
*
* Selected state would be forced on the bus when @ref NRF_USBD_TASK_DRIVEDPDM is set.
* The state would be removed from the bus on @ref NRF_USBD_TASK_NODRIVEDPDM and
* the control would be returned to the USBD peripheral.
* @param val State to be set
*/
__STATIC_INLINE void nrf_usbd_dpdmvalue_set(nrf_usbd_dpdmvalue_t val);
/**
* @brief Function for setting data toggle
*
* Configuration of current state of data toggling
* @param ep Endpoint number with the information about its direction
* @param op Operation to execute
*/
__STATIC_INLINE void nrf_usbd_dtoggle_set(uint8_t ep, nrf_usbd_dtoggle_t op);
/**
* @brief Function for getting data toggle
*
* Get the current state of data toggling
* @param ep Endpoint number to return the information about current data toggling
* @retval NRF_USBD_DTOGGLE_DATA0 Data toggle is DATA0 on selected endpoint
* @retval NRF_USBD_DTOGGLE_DATA1 Data toggle is DATA1 on selected endpoint
*/
__STATIC_INLINE nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(uint8_t ep);
/**
* @brief Function for checking if endpoint is enabled
*
* @param ep Endpoint id to check
*
* @retval true Endpoint is enabled
* @retval false Endpoint is disabled
*/
__STATIC_INLINE bool nrf_usbd_ep_enable_check(uint8_t ep);
/**
* @brief Function for enabling selected endpoint
*
* Enabled endpoint responds for the tokens on the USB bus
*
* @param ep Endpoint id to enable
*/
__STATIC_INLINE void nrf_usbd_ep_enable(uint8_t ep);
/**
* @brief Function for disabling selected endpoint
*
* Disabled endpoint does not respond for the tokens on the USB bus
*
* @param ep Endpoint id to disable
*/
__STATIC_INLINE void nrf_usbd_ep_disable(uint8_t ep);
/**
* @brief Function for disabling all endpoints
*
* Auxiliary function to simply disable all aviable endpoints.
* It lefts only EP0 IN and OUT enabled.
*/
__STATIC_INLINE void nrf_usbd_ep_all_disable(void);
/**
* @brief Function for stalling selected endpoint
*
* @param ep Endpoint identifier
* @note This function cannot be called on isochronous endpoint
*/
__STATIC_INLINE void nrf_usbd_ep_stall(uint8_t ep);
/**
* @brief Function for unstalling selected endpoint
*
* @param ep Endpoint identifier
* @note This function cannot be called on isochronous endpoint
*/
__STATIC_INLINE void nrf_usbd_ep_unstall(uint8_t ep);
/**
* @brief Function for configuration of isochronous buffer splitting
*
* Configure isochronous buffer splitting between IN and OUT endpoints.
*
* @param split Required configuration
*/
__STATIC_INLINE void nrf_usbd_isosplit_set(nrf_usbd_isosplit_t split);
/**
* @brief Function for getting the isochronous buffer splitting configuration
*
* Get the current isochronous buffer splitting configuration.
*
* @return Current configuration
*/
__STATIC_INLINE nrf_usbd_isosplit_t nrf_usbd_isosplit_get(void);
/**
* @brief Function for getting current frame counter
*
* @return Current frame counter
*/
__STATIC_INLINE uint32_t nrf_usbd_framecntr_get(void);
/**
* @brief Function for entering into low power mode
*
* After this function is called the clock source from the USBD is disconnected internally.
* After this function is called most of the USBD registers cannot be accessed anymore.
*
* @sa nrf_usbd_lowpower_disable
* @sa nrf_usbd_lowpower_check
*/
__STATIC_INLINE void nrf_usbd_lowpower_enable(void);
/**
* @brief Function for exiting from low power mode
*
* After this function is called the clock source for the USBD is connected internally.
* The @ref NRF_USBD_EVENTCAUSE_WUREQ_MASK event would be generated and
* then the USBD registers may be accessed.
*
* @sa nrf_usbd_lowpower_enable
* @sa nrf_usbd_lowpower_check
*/
__STATIC_INLINE void nrf_usbd_lowpower_disable(void);
/**
* @brief Function for checking the state of the low power mode
*
* @retval true USBD is in low power mode
* @retval false USBD is not in low power mode
*/
__STATIC_INLINE bool nrf_usbd_lowpower_check(void);
/**
* @brief Function for configuring EasyDMA channel
*
* Configures EasyDMA for the transfer.
*
* @param ep Endpoint identifier (with direction)
* @param ptr Pointer to the data
* @param maxcnt Number of bytes to transfer
*/
__STATIC_INLINE void nrf_usbd_ep_easydma_set(uint8_t ep, uint32_t ptr, uint32_t maxcnt);
/**
* @brief Function for getting number of transferred bytes
*
* Get number of transferred bytes in the last transaction
*
* @param ep Endpoint identifier
*
* @return The content of the AMOUNT register
*/
__STATIC_INLINE uint32_t nrf_usbd_ep_amount_get(uint8_t ep);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
void nrf_usbd_enable(void)
{
#ifdef NRF_FPGA_IMPLEMENTATION
*(volatile uint32_t *)0x400005F4 = 3;
__ISB();
__DSB();
*(volatile uint32_t *)0x400005F0 = 3;
__ISB();
__DSB();
#endif
NRF_USBD->ENABLE = USBD_ENABLE_ENABLE_Enabled << USBD_ENABLE_ENABLE_Pos;
__ISB();
__DSB();
}
void nrf_usbd_disable(void)
{
NRF_USBD->ENABLE = USBD_ENABLE_ENABLE_Disabled << USBD_ENABLE_ENABLE_Pos;
__ISB();
__DSB();
}
uint32_t nrf_usbd_eventcause_get(void)
{
return NRF_USBD->EVENTCAUSE;
}
void nrf_usbd_eventcause_clear(uint32_t flags)
{
NRF_USBD->EVENTCAUSE = flags;
__ISB();
__DSB();
}
uint32_t nrf_usbd_eventcause_get_and_clear(void)
{
uint32_t ret;
ret = nrf_usbd_eventcause_get();
nrf_usbd_eventcause_clear(ret);
__ISB();
__DSB();
return ret;
}
nrf_usbd_busstate_t nrf_usbd_busstate_get(void)
{
return (nrf_usbd_busstate_t)(NRF_USBD->BUSSTATE);
}
uint32_t nrf_usbd_haltedep(uint8_t ep)
{
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep))
{
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->HALTED.EPIN));
return NRF_USBD->HALTED.EPIN[epnr];
}
else
{
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->HALTED.EPOUT));
return NRF_USBD->HALTED.EPOUT[epnr];
}
}
bool nrf_usbd_ep_is_stall(uint8_t ep)
{
if (NRF_USBD_EPISO_CHECK(ep))
return false;
return USBD_HALTED_EPOUT_GETSTATUS_Halted == nrf_usbd_haltedep(ep);
}
uint32_t nrf_usbd_epstatus_get(void)
{
return NRF_USBD->EPSTATUS;
}
void nrf_usbd_epstatus_clear(uint32_t flags)
{
NRF_USBD->EPSTATUS = flags;
__ISB();
__DSB();
}
uint32_t nrf_usbd_epstatus_get_and_clear(void)
{
uint32_t ret;
ret = nrf_usbd_epstatus_get();
nrf_usbd_epstatus_clear(ret);
return ret;
}
uint32_t nrf_usbd_epdatastatus_get(void)
{
return NRF_USBD->EPDATASTATUS;
}
void nrf_usbd_epdatastatus_clear(uint32_t flags)
{
NRF_USBD->EPDATASTATUS = flags;
__ISB();
__DSB();
}
uint32_t nrf_usbd_epdatastatus_get_and_clear(void)
{
uint32_t ret;
ret = nrf_usbd_epdatastatus_get();
nrf_usbd_epdatastatus_clear(ret);
__ISB();
__DSB();
return ret;
}
uint8_t nrf_usbd_setup_bmrequesttype_get(void)
{
return (uint8_t)(NRF_USBD->BMREQUESTTYPE);
}
uint8_t nrf_usbd_setup_brequest_get(void)
{
return (uint8_t)(NRF_USBD->BREQUEST);
}
uint16_t nrf_usbd_setup_wvalue_get(void)
{
const uint16_t val = NRF_USBD->WVALUEL;
return (uint16_t)(val | ((NRF_USBD->WVALUEH) << 8));
}
uint16_t nrf_usbd_setup_windex_get(void)
{
const uint16_t val = NRF_USBD->WINDEXL;
return (uint16_t)(val | ((NRF_USBD->WINDEXH) << 8));
}
uint16_t nrf_usbd_setup_wlength_get(void)
{
const uint16_t val = NRF_USBD->WLENGTHL;
return (uint16_t)(val | ((NRF_USBD->WLENGTHH) << 8));
}
size_t nrf_usbd_epout_size_get(uint8_t ep)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
ASSERT(NRF_USBD_EPOUT_CHECK(ep));
if (NRF_USBD_EPISO_CHECK(ep))
{
size_t size_isoout = NRF_USBD->SIZE.ISOOUT;
if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) == (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos))
{
size_isoout = 0;
}
return size_isoout;
}
ASSERT(NRF_USBD_EP_NR_GET(ep) < ARRAY_SIZE(NRF_USBD->SIZE.EPOUT));
return NRF_USBD->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)];
}
size_t nrf_usbd_episoout_size_get(uint8_t ep)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
ASSERT(NRF_USBD_EPOUT_CHECK(ep));
ASSERT(NRF_USBD_EPISO_CHECK(ep));
size_t size_isoout = NRF_USBD->SIZE.ISOOUT;
if (size_isoout == 0)
{
size_isoout = NRF_USBD_EPISOOUT_NO_DATA;
}
else if ((size_isoout & USBD_SIZE_ISOOUT_ZERO_Msk) == (USBD_SIZE_ISOOUT_ZERO_ZeroData << USBD_SIZE_ISOOUT_ZERO_Pos))
{
size_isoout = 0;
}
return size_isoout;
}
void nrf_usbd_epout_clear(uint8_t ep)
{
ASSERT(NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < ARRAY_SIZE(NRF_USBD->SIZE.EPOUT)));
NRF_USBD->SIZE.EPOUT[NRF_USBD_EP_NR_GET(ep)] = 0;
__ISB();
__DSB();
}
void nrf_usbd_pullup_enable(void)
{
NRF_USBD->USBPULLUP = USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos;
__ISB();
__DSB();
}
void nrf_usbd_pullup_disable(void)
{
NRF_USBD->USBPULLUP = USBD_USBPULLUP_CONNECT_Disabled << USBD_USBPULLUP_CONNECT_Pos;
__ISB();
__DSB();
}
bool nrf_usbd_pullup_check(void)
{
return NRF_USBD->USBPULLUP == (USBD_USBPULLUP_CONNECT_Enabled << USBD_USBPULLUP_CONNECT_Pos);
}
void nrf_usbd_dpdmvalue_set(nrf_usbd_dpdmvalue_t val)
{
NRF_USBD->DPDMVALUE = ((uint32_t)val) << USBD_DPDMVALUE_STATE_Pos;
}
void nrf_usbd_dtoggle_set(uint8_t ep, nrf_usbd_dtoggle_t op)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
ASSERT(!NRF_USBD_EPISO_CHECK(ep));
NRF_USBD->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos);
__DSB();
NRF_USBD->DTOGGLE = ep | (op << USBD_DTOGGLE_VALUE_Pos);
__ISB();
__DSB();
}
nrf_usbd_dtoggle_t nrf_usbd_dtoggle_get(uint8_t ep)
{
uint32_t retval;
/* Select the endpoint to read */
NRF_USBD->DTOGGLE = ep | (NRF_USBD_DTOGGLE_NOP << USBD_DTOGGLE_VALUE_Pos);
retval = ((NRF_USBD->DTOGGLE) & USBD_DTOGGLE_VALUE_Msk) >> USBD_DTOGGLE_VALUE_Pos;
return (nrf_usbd_dtoggle_t)retval;
}
bool nrf_usbd_ep_enable_check(uint8_t ep)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep))
{
return 0 != (NRF_USBD->EPINEN & (1UL << epnr));
}
else
{
return 0 != (NRF_USBD->EPOUTEN & (1UL << epnr));
}
}
void nrf_usbd_ep_enable(uint8_t ep)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep))
{
NRF_USBD->EPINEN |= 1UL << epnr;
}
else
{
NRF_USBD->EPOUTEN |= 1UL << epnr;
}
__ISB();
__DSB();
}
void nrf_usbd_ep_disable(uint8_t ep)
{
ASSERT(NRF_USBD_EP_VALIDATE(ep));
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep))
{
NRF_USBD->EPINEN &= ~(1UL << epnr);
}
else
{
NRF_USBD->EPOUTEN &= ~(1UL << epnr);
}
__ISB();
__DSB();
}
void nrf_usbd_ep_all_disable(void)
{
NRF_USBD->EPINEN = USBD_EPINEN_IN0_Enable << USBD_EPINEN_IN0_Pos;
NRF_USBD->EPOUTEN = USBD_EPOUTEN_OUT0_Enable << USBD_EPOUTEN_OUT0_Pos;
__ISB();
__DSB();
}
void nrf_usbd_ep_stall(uint8_t ep)
{
ASSERT(!NRF_USBD_EPISO_CHECK(ep));
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep;
__ISB();
__DSB();
}
void nrf_usbd_ep_unstall(uint8_t ep)
{
ASSERT(!NRF_USBD_EPISO_CHECK(ep));
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep;
__ISB();
__DSB();
}
void nrf_usbd_isosplit_set(nrf_usbd_isosplit_t split)
{
NRF_USBD->ISOSPLIT = split << USBD_ISOSPLIT_SPLIT_Pos;
}
nrf_usbd_isosplit_t nrf_usbd_isosplit_get(void)
{
return (nrf_usbd_isosplit_t)
(((NRF_USBD->ISOSPLIT) & USBD_ISOSPLIT_SPLIT_Msk) >> USBD_ISOSPLIT_SPLIT_Pos);
}
uint32_t nrf_usbd_framecntr_get(void)
{
return NRF_USBD->FRAMECNTR;
}
void nrf_usbd_lowpower_enable(void)
{
NRF_USBD->LOWPOWER = USBD_LOWPOWER_LOWPOWER_LowPower << USBD_LOWPOWER_LOWPOWER_Pos;
}
void nrf_usbd_lowpower_disable(void)
{
NRF_USBD->LOWPOWER = USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos;
}
bool nrf_usbd_lowpower_check(void)
{
return (NRF_USBD->LOWPOWER != (USBD_LOWPOWER_LOWPOWER_ForceNormal << USBD_LOWPOWER_LOWPOWER_Pos));
}
void nrf_usbd_ep_easydma_set(uint8_t ep, uint32_t ptr, uint32_t maxcnt)
{
if (NRF_USBD_EPIN_CHECK(ep))
{
if (NRF_USBD_EPISO_CHECK(ep))
{
NRF_USBD->ISOIN.PTR = ptr;
NRF_USBD->ISOIN.MAXCNT = maxcnt;
}
else
{
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->EPIN));
NRF_USBD->EPIN[epnr].PTR = ptr;
NRF_USBD->EPIN[epnr].MAXCNT = maxcnt;
}
}
else
{
if (NRF_USBD_EPISO_CHECK(ep))
{
NRF_USBD->ISOOUT.PTR = ptr;
NRF_USBD->ISOOUT.MAXCNT = maxcnt;
}
else
{
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->EPOUT));
NRF_USBD->EPOUT[epnr].PTR = ptr;
NRF_USBD->EPOUT[epnr].MAXCNT = maxcnt;
}
}
}
uint32_t nrf_usbd_ep_amount_get(uint8_t ep)
{
uint32_t ret;
if (NRF_USBD_EPIN_CHECK(ep))
{
if (NRF_USBD_EPISO_CHECK(ep))
{
ret = NRF_USBD->ISOIN.AMOUNT;
}
else
{
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->EPOUT));
ret = NRF_USBD->EPIN[epnr].AMOUNT;
}
}
else
{
if (NRF_USBD_EPISO_CHECK(ep))
{
ret = NRF_USBD->ISOOUT.AMOUNT;
}
else
{
uint8_t epnr = NRF_USBD_EP_NR_GET(ep);
ASSERT(epnr < ARRAY_SIZE(NRF_USBD->EPOUT));
ret = NRF_USBD->EPOUT[epnr].AMOUNT;
}
}
return ret;
}
#endif /* SUPPRESS_INLINE_IMPLEMENTATION */
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* NRF_USBD_H__ */