186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!doctype html>
 | |
| <html lang="en">
 | |
| 
 | |
| 	<head>
 | |
| 		<meta charset="utf-8">
 | |
| 
 | |
| 		<title>reveal.js - Math Plugin</title>
 | |
| 
 | |
| 		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
 | |
| 
 | |
| 		<link rel="stylesheet" href="../../css/reveal.css">
 | |
| 		<link rel="stylesheet" href="../../css/theme/night.css" id="theme">
 | |
| 	</head>
 | |
| 
 | |
| 	<body>
 | |
| 
 | |
| 		<div class="reveal">
 | |
| 
 | |
| 			<div class="slides">
 | |
| 
 | |
| 				<section>
 | |
| 					<h2>reveal.js Math Plugin</h2>
 | |
| 					<p>A thin wrapper for MathJax</p>
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>The Lorenz Equations</h3>
 | |
| 
 | |
| 					\[\begin{aligned}
 | |
| 					\dot{x} & = \sigma(y-x) \\
 | |
| 					\dot{y} & = \rho x - y - xz \\
 | |
| 					\dot{z} & = -\beta z + xy
 | |
| 					\end{aligned} \]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>The Cauchy-Schwarz Inequality</h3>
 | |
| 
 | |
| 					<script type="math/tex; mode=display">
 | |
| 						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
 | |
| 					</script>
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>A Cross Product Formula</h3>
 | |
| 
 | |
| 					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
 | |
| 					\mathbf{i} & \mathbf{j} & \mathbf{k} \\
 | |
| 					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
 | |
| 					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
 | |
| 					\end{vmatrix}  \]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
 | |
| 
 | |
| 					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>An Identity of Ramanujan</h3>
 | |
| 
 | |
| 					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
 | |
| 					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
 | |
| 					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>A Rogers-Ramanujan Identity</h3>
 | |
| 
 | |
| 					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
 | |
| 					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<h3>Maxwell’s Equations</h3>
 | |
| 
 | |
| 					\[  \begin{aligned}
 | |
| 					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
 | |
| 					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
 | |
| 					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
 | |
| 					\]
 | |
| 				</section>
 | |
| 
 | |
| 				<section>
 | |
| 					<section>
 | |
| 						<h3>The Lorenz Equations</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[\begin{aligned}
 | |
| 							\dot{x} & = \sigma(y-x) \\
 | |
| 							\dot{y} & = \rho x - y - xz \\
 | |
| 							\dot{z} & = -\beta z + xy
 | |
| 							\end{aligned} \]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>The Cauchy-Schwarz Inequality</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>A Cross Product Formula</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
 | |
| 							\mathbf{i} & \mathbf{j} & \mathbf{k} \\
 | |
| 							\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
 | |
| 							\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
 | |
| 							\end{vmatrix}  \]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>An Identity of Ramanujan</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
 | |
| 							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
 | |
| 							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>A Rogers-Ramanujan Identity</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
 | |
| 							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 
 | |
| 					<section>
 | |
| 						<h3>Maxwell’s Equations</h3>
 | |
| 
 | |
| 						<div class="fragment">
 | |
| 							\[  \begin{aligned}
 | |
| 							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
 | |
| 							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
 | |
| 							\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
 | |
| 							\]
 | |
| 						</div>
 | |
| 					</section>
 | |
| 				</section>
 | |
| 
 | |
| 			</div>
 | |
| 
 | |
| 		</div>
 | |
| 
 | |
| 		<script src="../../lib/js/head.min.js"></script>
 | |
| 		<script src="../../js/reveal.js"></script>
 | |
| 
 | |
| 		<script>
 | |
| 
 | |
| 			Reveal.initialize({
 | |
| 				history: true,
 | |
| 				transition: 'linear',
 | |
| 
 | |
| 				math: {
 | |
| 					// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 | |
| 					config: 'TeX-AMS_HTML-full'
 | |
| 				},
 | |
| 
 | |
| 				dependencies: [
 | |
| 					{ src: '../../lib/js/classList.js' },
 | |
| 					{ src: '../../plugin/math/math.js', async: true }
 | |
| 				]
 | |
| 			});
 | |
| 
 | |
| 		</script>
 | |
| 
 | |
| 	</body>
 | |
| </html>
 |