diff --git a/examples/math.html b/examples/math.html
index 49d4952..67fa546 100644
--- a/examples/math.html
+++ b/examples/math.html
@@ -15,7 +15,7 @@
-
+
@@ -32,11 +32,12 @@
- Reveal.js Math Plugin
+ reveal.js Math Plugin
+ A thin wrapper for MathJax
- The Lorenz Equations
+ The Lorenz Equations
\[\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
@@ -45,13 +46,13 @@
- The Cauchy-Schwarz Inequality
+ The Cauchy-Schwarz Inequality
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
- A Cross Product Formula
+ A Cross Product Formula
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
@@ -61,13 +62,36 @@
- An Identity of Ramanujan
+ The probability of getting \(k\) heads when flipping \(n\) coins is
+
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+
+
+
+ An Identity of Ramanujan
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+
+ A Rogers-Ramanujan Identity
+
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+
+
+
+ Maxwell’s Equations
+
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+
+
@@ -78,6 +102,8 @@