reveal.js Math Plugin
					A thin wrapper for MathJax
				
				
					The Lorenz Equations
					\[\begin{aligned}
					\dot{x} & = \sigma(y-x) \\
					\dot{y} & = \rho x - y - xz \\
					\dot{z} & = -\beta z + xy
					\end{aligned} \]
				
				
					The Cauchy-Schwarz Inequality
					\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
				
				
					A Cross Product Formula
					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
					\mathbf{i} & \mathbf{j} & \mathbf{k} \\
					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
					\end{vmatrix}  \]
				
				
					The probability of getting \(k\) heads when flipping \(n\) coins is
					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
				
				
					An Identity of Ramanujan
					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
				
				
					A Rogers-Ramanujan Identity
					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
				
				
					Maxwell’s Equations
					\[  \begin{aligned}
					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
					\]