get mapmemory working

Signed-off-by: Sean Cross <sean@xobs.io>
This commit is contained in:
Sean Cross 2023-12-31 16:38:53 +08:00
parent f54c3bdc6e
commit dfb33a95a1
5 changed files with 676 additions and 428 deletions

View File

@ -1,4 +1,7 @@
use crate::mmu::{AddressingMode, Mmu}; use std::sync::{Arc, RwLock};
pub use super::mmu::Memory;
use super::mmu::{AddressingMode, Mmu};
const DEFAULT_MEMORY_BASE: u64 = 0x80000000; const DEFAULT_MEMORY_BASE: u64 = 0x80000000;
@ -53,10 +56,6 @@ pub const MIP_SEIP: u64 = 0x200;
const MIP_STIP: u64 = 0x020; const MIP_STIP: u64 = 0x020;
const MIP_SSIP: u64 = 0x002; const MIP_SSIP: u64 = 0x002;
pub trait EventHandler {
fn handle_event(&mut self, cpu: &mut Cpu, args: [i64; 8]) -> [i64; 8];
}
/// Emulates a RISC-V CPU core /// Emulates a RISC-V CPU core
pub struct Cpu { pub struct Cpu {
clock: u64, clock: u64,
@ -70,13 +69,12 @@ pub struct Cpu {
pc: u64, pc: u64,
csr: [u64; CSR_CAPACITY], csr: [u64; CSR_CAPACITY],
mmu: Mmu, mmu: Mmu,
memory: Arc<RwLock<dyn Memory + Send + Sync>>,
reservation: u64, // @TODO: Should support multiple address reservations reservation: u64, // @TODO: Should support multiple address reservations
is_reservation_set: bool, is_reservation_set: bool,
_dump_flag: bool, _dump_flag: bool,
// decode_cache: DecodeCache, // decode_cache: DecodeCache,
unsigned_data_mask: u64, unsigned_data_mask: u64,
memory_base: u64,
handler: Option<Box<dyn EventHandler>>,
} }
#[derive(Clone)] #[derive(Clone)]
@ -85,7 +83,7 @@ pub enum Xlen {
Bit64, // @TODO: Support Bit128 Bit64, // @TODO: Support Bit128
} }
#[derive(Clone, Debug)] #[derive(Clone, Copy, Debug)]
pub enum PrivilegeMode { pub enum PrivilegeMode {
User, User,
Supervisor, Supervisor,
@ -146,7 +144,7 @@ fn get_privilege_encoding(mode: &PrivilegeMode) -> u8 {
} }
/// Returns `PrivilegeMode` from encoded privilege mode bits /// Returns `PrivilegeMode` from encoded privilege mode bits
pub fn get_privilege_mode(encoding: u64) -> PrivilegeMode { pub fn decode_privilege_mode(encoding: u64) -> PrivilegeMode {
match encoding { match encoding {
0 => PrivilegeMode::User, 0 => PrivilegeMode::User,
1 => PrivilegeMode::Supervisor, 1 => PrivilegeMode::Supervisor,
@ -217,18 +215,14 @@ fn get_trap_cause(trap: &Trap, xlen: &Xlen) -> u64 {
pub struct CpuBuilder { pub struct CpuBuilder {
xlen: Xlen, xlen: Xlen,
memory_size: u64, memory: Arc<RwLock<dyn Memory + Send + Sync>>,
memory_base: u64,
handler: Option<Box<dyn EventHandler>>,
} }
impl CpuBuilder { impl CpuBuilder {
pub fn new() -> Self { pub fn new(memory: Arc<RwLock<dyn Memory + Send + Sync>>) -> Self {
CpuBuilder { CpuBuilder {
xlen: Xlen::Bit64, xlen: Xlen::Bit64,
memory_size: 0, memory,
memory_base: DEFAULT_MEMORY_BASE,
handler: None,
} }
} }
@ -237,45 +231,19 @@ impl CpuBuilder {
self self
} }
pub fn memory_size(mut self, memory_size: u64) -> Self {
self.memory_size = memory_size;
self
}
pub fn handler(mut self, handler: Box<dyn EventHandler>) -> Self {
self.handler = Some(handler);
self
}
pub fn build(self) -> Cpu { pub fn build(self) -> Cpu {
let mut cpu = Cpu::new(self.memory_base); let mut cpu = Cpu::new(self.memory);
cpu.update_xlen(self.xlen.clone()); cpu.update_xlen(self.xlen.clone());
cpu.mmu.init_memory(self.memory_size);
if self.handler.is_some() {
cpu.set_handler(self.handler);
}
cpu cpu
} }
} }
impl Default for CpuBuilder {
fn default() -> Self {
Self::new()
}
}
impl Default for Cpu {
fn default() -> Self {
Self::new(DEFAULT_MEMORY_BASE)
}
}
impl Cpu { impl Cpu {
/// Creates a new `Cpu`. /// Creates a new `Cpu`.
/// ///
/// # Arguments /// # Arguments
/// * `Terminal` /// * `Terminal`
pub fn new(memory_base: u64) -> Self { pub fn new(memory: Arc<RwLock<dyn Memory + Send + Sync>>) -> Self {
Cpu { Cpu {
clock: 0, clock: 0,
xlen: Xlen::Bit64, xlen: Xlen::Bit64,
@ -285,14 +253,13 @@ impl Cpu {
f: [0.0; 32], f: [0.0; 32],
pc: 0, pc: 0,
csr: [0; CSR_CAPACITY], csr: [0; CSR_CAPACITY],
mmu: Mmu::new(Xlen::Bit64, memory_base), mmu: Mmu::new(Xlen::Bit64, memory.clone()),
reservation: 0, reservation: 0,
is_reservation_set: false, is_reservation_set: false,
_dump_flag: false, _dump_flag: false,
// decode_cache: DecodeCache::new(), // decode_cache: DecodeCache::new(),
unsigned_data_mask: 0xffffffffffffffff, unsigned_data_mask: 0xffffffffffffffff,
memory_base, memory,
handler: None,
} }
// let mut cpu = ; // let mut cpu = ;
// cpu.x[0xb] = 0x1020; // I don't know why but Linux boot seems to require this initialization // cpu.x[0xb] = 0x1020; // I don't know why but Linux boot seems to require this initialization
@ -300,14 +267,6 @@ impl Cpu {
// cpu // cpu
} }
/// Assigns an event handler to the CPU.
///
/// # Arguments
/// * `handler` An object that implements the [`EventHandler`](trait.EventHandler.html) trait
pub fn set_handler(&mut self, handler: Option<Box<dyn EventHandler>>) {
self.handler = handler;
}
/// Updates Program Counter content /// Updates Program Counter content
/// ///
/// # Arguments /// # Arguments
@ -1507,13 +1466,13 @@ impl Cpu {
&mut self.mmu &mut self.mmu
} }
pub fn memory_base(&self) -> u64 { // pub fn memory_base(&self) -> u64 {
self.memory_base // self.memory_base
} // }
pub fn memory_size(&self) -> u64 { // pub fn memory_size(&self) -> u64 {
self.mmu.memory_size() // self.mmu.memory_size()
} // }
pub fn phys_read_u32(&self, address: u64) -> u32 { pub fn phys_read_u32(&self, address: u64) -> u32 {
self.mmu.load_word_raw(address) self.mmu.load_word_raw(address)
@ -2455,30 +2414,27 @@ const INSTRUCTIONS: [Instruction; INSTRUCTION_NUM] = [
mask: 0xffffffff, mask: 0xffffffff,
data: 0x00000073, data: 0x00000073,
name: "ECALL", name: "ECALL",
operation: |cpu, _word, address| { operation: |cpu, _word, _address| {
if let Some(mut handler) = cpu.handler.take() {
let mut args = [0i64; 8]; let mut args = [0i64; 8];
for (src, dest) in cpu.x[10..].iter().zip(args.iter_mut()) { for (src, dest) in cpu.x[10..].iter().zip(args.iter_mut()) {
*dest = *src; *dest = *src;
} }
let result = handler.handle_event(cpu, args); let result = cpu.memory.write().unwrap().syscall(args);
for (src, dest) in result.iter().zip(cpu.x[10..].iter_mut()) { for (src, dest) in result.iter().zip(cpu.x[10..].iter_mut()) {
*dest = *src; *dest = *src;
} }
cpu.handler = Some(handler); Ok(())
return Ok(());
}
let exception_type = match cpu.privilege_mode { // let exception_type = match cpu.privilege_mode {
PrivilegeMode::User => TrapType::EnvironmentCallFromUMode, // PrivilegeMode::User => TrapType::EnvironmentCallFromUMode,
PrivilegeMode::Supervisor => TrapType::EnvironmentCallFromSMode, // PrivilegeMode::Supervisor => TrapType::EnvironmentCallFromSMode,
PrivilegeMode::Machine => TrapType::EnvironmentCallFromMMode, // PrivilegeMode::Machine => TrapType::EnvironmentCallFromMMode,
PrivilegeMode::Reserved => panic!("Unknown Privilege mode"), // PrivilegeMode::Reserved => panic!("Unknown Privilege mode"),
}; // };
Err(Trap { // Err(Trap {
trap_type: exception_type, // trap_type: exception_type,
value: address, // value: address,
}) // })
}, },
disassemble: dump_empty, disassemble: dump_empty,
}, },
@ -3102,7 +3058,7 @@ const INSTRUCTIONS: [Instruction; INSTRUCTION_NUM] = [
let status = cpu.read_csr_raw(CSR_MSTATUS_ADDRESS); let status = cpu.read_csr_raw(CSR_MSTATUS_ADDRESS);
let mpie = (status >> 7) & 1; let mpie = (status >> 7) & 1;
let mpp = (status >> 11) & 0x3; let mpp = (status >> 11) & 0x3;
let mprv = match get_privilege_mode(mpp) { let mprv = match decode_privilege_mode(mpp) {
PrivilegeMode::Machine => (status >> 17) & 1, PrivilegeMode::Machine => (status >> 17) & 1,
_ => 0, _ => 0,
}; };
@ -3470,7 +3426,7 @@ const INSTRUCTIONS: [Instruction; INSTRUCTION_NUM] = [
let status = cpu.read_csr_raw(CSR_SSTATUS_ADDRESS); let status = cpu.read_csr_raw(CSR_SSTATUS_ADDRESS);
let spie = (status >> 5) & 1; let spie = (status >> 5) & 1;
let spp = (status >> 8) & 1; let spp = (status >> 8) & 1;
let mprv = match get_privilege_mode(spp) { let mprv = match decode_privilege_mode(spp) {
PrivilegeMode::Machine => (status >> 17) & 1, PrivilegeMode::Machine => (status >> 17) & 1,
_ => 0, _ => 0,
}; };

View File

@ -1,10 +1,23 @@
use std::{collections::HashMap, num::NonZeroU64}; use std::{
collections::HashMap,
use crate::{ sync::{Arc, RwLock},
cpu::{get_privilege_mode, PrivilegeMode, Trap, TrapType, Xlen},
memory::Memory,
}; };
use crate::cpu::{decode_privilege_mode, PrivilegeMode, Trap, TrapType, Xlen};
pub trait Memory {
fn read_u8(&self, p_address: u64) -> u8;
fn read_u16(&self, p_address: u64) -> u16;
fn read_u32(&self, p_address: u64) -> u32;
fn read_u64(&self, p_address: u64) -> u64;
fn write_u8(&mut self, p_address: u64, value: u8);
fn write_u16(&mut self, p_address: u64, value: u16);
fn write_u32(&mut self, p_address: u64, value: u32);
fn write_u64(&mut self, p_address: u64, value: u64);
fn validate_address(&self, address: u64) -> bool;
fn syscall(&mut self, args: [i64; 8]) -> [i64; 8];
}
/// Emulates Memory Management Unit. It holds the Main memory and peripheral /// Emulates Memory Management Unit. It holds the Main memory and peripheral
/// devices, maps address to them, and accesses them depending on address. /// devices, maps address to them, and accesses them depending on address.
/// It also manages virtual-physical address translation and memoty protection. /// It also manages virtual-physical address translation and memoty protection.
@ -16,11 +29,10 @@ pub struct Mmu {
ppn: u64, ppn: u64,
addressing_mode: AddressingMode, addressing_mode: AddressingMode,
privilege_mode: PrivilegeMode, privilege_mode: PrivilegeMode,
memory: MemoryWrapper, memory: Arc<RwLock<dyn Memory + Send + Sync>>,
/// The size of main memory (if initialized)
memory_length: Option<NonZeroU64>,
// /// The size of main memory (if initialized)
// memory_length: Option<NonZeroU64>,
/// Address translation can be affected `mstatus` (MPRV, MPP in machine mode) /// Address translation can be affected `mstatus` (MPRV, MPP in machine mode)
/// then `Mmu` has copy of it. /// then `Mmu` has copy of it.
mstatus: u64, mstatus: u64,
@ -71,27 +83,19 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `xlen` /// * `xlen`
/// * `terminal` pub fn new(xlen: Xlen, memory: Arc<RwLock<dyn Memory + Send + Sync>>) -> Self {
pub fn new(xlen: Xlen, dram_base: u64) -> Self {
// // Load default device tree binary content
// let content = include_bytes!("./device/dtb.dtb");
// for i in 0..content.len() {
// dtb[i] = content[i];
// }
Mmu { Mmu {
// clock: 0, // clock: 0,
xlen, xlen,
ppn: 0, ppn: 0,
addressing_mode: AddressingMode::None, addressing_mode: AddressingMode::None,
privilege_mode: PrivilegeMode::Machine, privilege_mode: PrivilegeMode::Machine,
memory: MemoryWrapper::new(dram_base), memory,
mstatus: 0, mstatus: 0,
page_cache_enabled: false, page_cache_enabled: false,
fetch_page_cache: HashMap::default(), fetch_page_cache: HashMap::default(),
load_page_cache: HashMap::default(), load_page_cache: HashMap::default(),
store_page_cache: HashMap::default(), store_page_cache: HashMap::default(),
memory_length: None,
} }
} }
@ -104,19 +108,19 @@ impl Mmu {
self.clear_page_cache(); self.clear_page_cache();
} }
/// Initializes Main memory. This method is expected to be called only once. // /// Initializes Main memory. This method is expected to be called only once.
/// // ///
/// # Arguments // /// # Arguments
/// * `capacity` // /// * `capacity`
pub fn init_memory(&mut self, capacity: u64) { // pub fn init_memory(&mut self, capacity: u64) {
assert!(self.memory_length.is_none()); // assert!(self.memory_length.is_none());
self.memory_length = Some(NonZeroU64::new(capacity).unwrap()); // self.memory_length = Some(NonZeroU64::new(capacity).unwrap());
self.memory.init(capacity); // self.memory.init(capacity);
} // }
pub fn memory_size(&self) -> u64 { // pub fn memory_size(&self) -> u64 {
self.memory_length.unwrap().get() // self.memory_length.unwrap().get()
} // }
/// Enables or disables page cache optimization. /// Enables or disables page cache optimization.
/// ///
@ -185,7 +189,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
fn fetch(&mut self, v_address: u64) -> Result<u8, Trap> { fn fetch(&self, v_address: u64) -> Result<u8, Trap> {
self.translate_address(v_address, &MemoryAccessType::Execute) self.translate_address(v_address, &MemoryAccessType::Execute)
.map(|p_address| self.load_raw(p_address)) .map(|p_address| self.load_raw(p_address))
.map_err(|()| Trap { .map_err(|()| Trap {
@ -199,7 +203,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn fetch_word(&mut self, v_address: u64) -> Result<u32, Trap> { pub fn fetch_word(&self, v_address: u64) -> Result<u32, Trap> {
let width = 4; let width = 4;
if (v_address & 0xfff) <= (0x1000 - width) { if (v_address & 0xfff) <= (0x1000 - width) {
// Fast path. All bytes fetched are in the same page so // Fast path. All bytes fetched are in the same page so
@ -228,7 +232,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn load(&mut self, v_address: u64) -> Result<u8, Trap> { pub fn load(&self, v_address: u64) -> Result<u8, Trap> {
let effective_address = self.trim_to_xlen(v_address); let effective_address = self.trim_to_xlen(v_address);
match self.translate_address(effective_address, &MemoryAccessType::Read) { match self.translate_address(effective_address, &MemoryAccessType::Read) {
Ok(p_address) => Ok(self.load_raw(p_address)), Ok(p_address) => Ok(self.load_raw(p_address)),
@ -245,7 +249,7 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `width` Must be 1, 2, 4, or 8 /// * `width` Must be 1, 2, 4, or 8
fn load_bytes(&mut self, v_address: u64, width: u64) -> Result<u64, Trap> { fn load_bytes(&self, v_address: u64, width: u64) -> Result<u64, Trap> {
debug_assert!( debug_assert!(
width == 1 || width == 2 || width == 4 || width == 8, width == 1 || width == 2 || width == 4 || width == 8,
"Width must be 1, 2, 4, or 8. {:X}", "Width must be 1, 2, 4, or 8. {:X}",
@ -287,7 +291,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn load_halfword(&mut self, v_address: u64) -> Result<u16, Trap> { pub fn load_halfword(&self, v_address: u64) -> Result<u16, Trap> {
self.load_bytes(v_address, 2).map(|data| data as u16) self.load_bytes(v_address, 2).map(|data| data as u16)
} }
@ -296,7 +300,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn load_word(&mut self, v_address: u64) -> Result<u32, Trap> { pub fn load_word(&self, v_address: u64) -> Result<u32, Trap> {
self.load_bytes(v_address, 4).map(|data| data as u32) self.load_bytes(v_address, 4).map(|data| data as u32)
} }
@ -305,7 +309,7 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn load_doubleword(&mut self, v_address: u64) -> Result<u64, Trap> { pub fn load_doubleword(&self, v_address: u64) -> Result<u64, Trap> {
self.load_bytes(v_address, 8) self.load_bytes(v_address, 8)
} }
@ -315,7 +319,7 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `value` /// * `value`
pub fn store(&mut self, v_address: u64, value: u8) -> Result<(), Trap> { pub fn store(&self, v_address: u64, value: u8) -> Result<(), Trap> {
self.translate_address(v_address, &MemoryAccessType::Write) self.translate_address(v_address, &MemoryAccessType::Write)
.map(|p_address| self.store_raw(p_address, value)) .map(|p_address| self.store_raw(p_address, value))
.map_err(|()| Trap { .map_err(|()| Trap {
@ -331,7 +335,7 @@ impl Mmu {
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `value` data written /// * `value` data written
/// * `width` Must be 1, 2, 4, or 8 /// * `width` Must be 1, 2, 4, or 8
fn store_bytes(&mut self, v_address: u64, value: u64, width: u64) -> Result<(), Trap> { fn store_bytes(&self, v_address: u64, value: u64, width: u64) -> Result<(), Trap> {
debug_assert!( debug_assert!(
width == 1 || width == 2 || width == 4 || width == 8, width == 1 || width == 2 || width == 4 || width == 8,
"Width must be 1, 2, 4, or 8. {:X}", "Width must be 1, 2, 4, or 8. {:X}",
@ -374,7 +378,7 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `value` data written /// * `value` data written
pub fn store_halfword(&mut self, v_address: u64, value: u16) -> Result<(), Trap> { pub fn store_halfword(&self, v_address: u64, value: u16) -> Result<(), Trap> {
self.store_bytes(v_address, value as u64, 2) self.store_bytes(v_address, value as u64, 2)
} }
@ -384,7 +388,7 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `value` data written /// * `value` data written
pub fn store_word(&mut self, v_address: u64, value: u32) -> Result<(), Trap> { pub fn store_word(&self, v_address: u64, value: u32) -> Result<(), Trap> {
self.store_bytes(v_address, value as u64, 4) self.store_bytes(v_address, value as u64, 4)
} }
@ -394,7 +398,7 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
/// * `value` data written /// * `value` data written
pub fn store_doubleword(&mut self, v_address: u64, value: u64) -> Result<(), Trap> { pub fn store_doubleword(&self, v_address: u64, value: u64) -> Result<(), Trap> {
self.store_bytes(v_address, value, 8) self.store_bytes(v_address, value, 8)
} }
@ -404,7 +408,10 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
pub(crate) fn load_raw(&self, p_address: u64) -> u8 { pub(crate) fn load_raw(&self, p_address: u64) -> u8 {
self.memory.read_byte(self.trim_to_xlen(p_address)) self.memory
.read()
.unwrap()
.read_u8(self.trim_to_xlen(p_address))
} }
/// Loads two bytes from main memory or peripheral devices depending on /// Loads two bytes from main memory or peripheral devices depending on
@ -413,7 +420,10 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
fn load_halfword_raw(&self, p_address: u64) -> u16 { fn load_halfword_raw(&self, p_address: u64) -> u16 {
self.memory.read_halfword(self.trim_to_xlen(p_address)) self.memory
.read()
.unwrap()
.read_u16(self.trim_to_xlen(p_address))
} }
/// Loads four bytes from main memory or peripheral devices depending on /// Loads four bytes from main memory or peripheral devices depending on
@ -422,7 +432,10 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
pub fn load_word_raw(&self, p_address: u64) -> u32 { pub fn load_word_raw(&self, p_address: u64) -> u32 {
self.memory.read_word(self.trim_to_xlen(p_address)) self.memory
.read()
.unwrap()
.read_u32(self.trim_to_xlen(p_address))
} }
/// Loads eight bytes from main memory or peripheral devices depending on /// Loads eight bytes from main memory or peripheral devices depending on
@ -431,7 +444,10 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
fn load_doubleword_raw(&self, p_address: u64) -> u64 { fn load_doubleword_raw(&self, p_address: u64) -> u64 {
self.memory.read_doubleword(self.trim_to_xlen(p_address)) self.memory
.read()
.unwrap()
.read_u64(self.trim_to_xlen(p_address))
} }
/// Stores a byte to main memory or peripheral devices depending on /// Stores a byte to main memory or peripheral devices depending on
@ -440,8 +456,11 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
/// * `value` data written /// * `value` data written
pub(crate) fn store_raw(&mut self, p_address: u64, value: u8) { pub(crate) fn store_raw(&self, p_address: u64, value: u8) {
self.memory.write_byte(self.trim_to_xlen(p_address), value) self.memory
.write()
.unwrap()
.write_u8(self.trim_to_xlen(p_address), value)
} }
/// Stores two bytes to main memory or peripheral devices depending on /// Stores two bytes to main memory or peripheral devices depending on
@ -450,9 +469,11 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
/// * `value` data written /// * `value` data written
pub(crate) fn store_halfword_raw(&mut self, p_address: u64, value: u16) { pub(crate) fn store_halfword_raw(&self, p_address: u64, value: u16) {
self.memory self.memory
.write_halfword(self.trim_to_xlen(p_address), value) .write()
.unwrap()
.write_u16(self.trim_to_xlen(p_address), value)
} }
/// Stores four bytes to main memory or peripheral devices depending on /// Stores four bytes to main memory or peripheral devices depending on
@ -461,8 +482,11 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
/// * `value` data written /// * `value` data written
pub(crate) fn store_word_raw(&mut self, p_address: u64, value: u32) { pub(crate) fn store_word_raw(&self, p_address: u64, value: u32) {
self.memory.write_word(self.trim_to_xlen(p_address), value) self.memory
.write()
.unwrap()
.write_u32(self.trim_to_xlen(p_address), value)
} }
/// Stores eight bytes to main memory or peripheral devices depending on /// Stores eight bytes to main memory or peripheral devices depending on
@ -471,9 +495,11 @@ impl Mmu {
/// # Arguments /// # Arguments
/// * `p_address` Physical address /// * `p_address` Physical address
/// * `value` data written /// * `value` data written
fn store_doubleword_raw(&mut self, p_address: u64, value: u64) { fn store_doubleword_raw(&self, p_address: u64, value: u64) {
self.memory self.memory
.write_doubleword(self.trim_to_xlen(p_address), value) .write()
.unwrap()
.write_u64(self.trim_to_xlen(p_address), value)
} }
/// Checks if passed virtual address is valid (pointing a certain device) or not. /// Checks if passed virtual address is valid (pointing a certain device) or not.
@ -481,18 +507,26 @@ impl Mmu {
/// ///
/// # Arguments /// # Arguments
/// * `v_address` Virtual address /// * `v_address` Virtual address
pub fn validate_address(&mut self, v_address: u64) -> Option<bool> { pub fn validate_address(&self, v_address: u64) -> Option<bool> {
if let Ok(p_address) = self.translate_address(v_address, &MemoryAccessType::DontCare) { self.translate_address(v_address, &MemoryAccessType::DontCare)
Some(self.memory.validate_address(self.trim_to_xlen(p_address))) .ok()
} else { .map(|p_address| {
None self.memory
} .write()
.unwrap()
.validate_address(self.trim_to_xlen(p_address))
})
} }
fn translate_address( fn translate_address(&self, v_address: u64, access_type: &MemoryAccessType) -> Result<u64, ()> {
&mut self, self.translate_address_with_privilege_mode(v_address, access_type, self.privilege_mode)
}
fn translate_address_with_privilege_mode(
&self,
v_address: u64, v_address: u64,
access_type: &MemoryAccessType, access_type: &MemoryAccessType,
privilege_mode: PrivilegeMode,
) -> Result<u64, ()> { ) -> Result<u64, ()> {
let address = self.trim_to_xlen(v_address); let address = self.trim_to_xlen(v_address);
let v_page = address & !0xfff; let v_page = address & !0xfff;
@ -510,28 +544,24 @@ impl Mmu {
let p_address = match self.addressing_mode { let p_address = match self.addressing_mode {
AddressingMode::None => Ok(address), AddressingMode::None => Ok(address),
AddressingMode::SV32 => match self.privilege_mode { AddressingMode::SV32 => match privilege_mode {
// @TODO: Optimize // @TODO: Optimize
PrivilegeMode::Machine => match access_type { PrivilegeMode::Machine => {
MemoryAccessType::Execute => Ok(address), if let MemoryAccessType::Execute = access_type {
// @TODO: Remove magic number Ok(address)
_ => match (self.mstatus >> 17) & 1 { } else if (self.mstatus >> 17) & 1 == 0 {
0 => Ok(address), Ok(address)
_ => { } else {
let privilege_mode = get_privilege_mode((self.mstatus >> 9) & 3); match decode_privilege_mode((self.mstatus >> 9) & 3) {
match privilege_mode {
PrivilegeMode::Machine => Ok(address), PrivilegeMode::Machine => Ok(address),
_ => { temp_privilege_mode => self.translate_address_with_privilege_mode(
let current_privilege_mode = self.privilege_mode.clone(); v_address,
self.update_privilege_mode(privilege_mode); access_type,
let result = self.translate_address(v_address, access_type); temp_privilege_mode,
self.update_privilege_mode(current_privilege_mode); ),
result
} }
} }
} }
},
},
PrivilegeMode::User | PrivilegeMode::Supervisor => { PrivilegeMode::User | PrivilegeMode::Supervisor => {
let vpns = [(address >> 12) & 0x3ff, (address >> 22) & 0x3ff]; let vpns = [(address >> 12) & 0x3ff, (address >> 22) & 0x3ff];
self.traverse_page(address, 2 - 1, self.ppn, &vpns, access_type) self.traverse_page(address, 2 - 1, self.ppn, &vpns, access_type)
@ -541,26 +571,22 @@ impl Mmu {
AddressingMode::SV39 => match self.privilege_mode { AddressingMode::SV39 => match self.privilege_mode {
// @TODO: Optimize // @TODO: Optimize
// @TODO: Remove duplicated code with SV32 // @TODO: Remove duplicated code with SV32
PrivilegeMode::Machine => match access_type { PrivilegeMode::Machine => {
MemoryAccessType::Execute => Ok(address), if let MemoryAccessType::Execute = access_type {
// @TODO: Remove magic number Ok(address)
_ => match (self.mstatus >> 17) & 1 { } else if (self.mstatus >> 17) & 1 == 0 {
0 => Ok(address), Ok(address)
_ => { } else {
let privilege_mode = get_privilege_mode((self.mstatus >> 9) & 3); match decode_privilege_mode((self.mstatus >> 9) & 3) {
match privilege_mode {
PrivilegeMode::Machine => Ok(address), PrivilegeMode::Machine => Ok(address),
_ => { temp_privilege_mode => self.translate_address_with_privilege_mode(
let current_privilege_mode = self.privilege_mode.clone(); v_address,
self.update_privilege_mode(privilege_mode); access_type,
let result = self.translate_address(v_address, access_type); temp_privilege_mode,
self.update_privilege_mode(current_privilege_mode); ),
result
} }
} }
} }
},
},
PrivilegeMode::User | PrivilegeMode::Supervisor => { PrivilegeMode::User | PrivilegeMode::Supervisor => {
let vpns = [ let vpns = [
(address >> 12) & 0x1ff, (address >> 12) & 0x1ff,
@ -576,27 +602,27 @@ impl Mmu {
} }
}; };
if self.page_cache_enabled { // if self.page_cache_enabled {
match p_address { // match p_address {
Ok(p_address) => { // Ok(p_address) => {
let p_page = p_address & !0xfff; // let p_page = p_address & !0xfff;
match access_type { // match access_type {
MemoryAccessType::Execute => self.fetch_page_cache.insert(v_page, p_page), // MemoryAccessType::Execute => self.fetch_page_cache.insert(v_page, p_page),
MemoryAccessType::Read => self.load_page_cache.insert(v_page, p_page), // MemoryAccessType::Read => self.load_page_cache.insert(v_page, p_page),
MemoryAccessType::Write => self.store_page_cache.insert(v_page, p_page), // MemoryAccessType::Write => self.store_page_cache.insert(v_page, p_page),
MemoryAccessType::DontCare => None, // MemoryAccessType::DontCare => None,
}; // };
Ok(p_address) // Ok(p_address)
} // }
Err(()) => Err(()), // Err(()) => Err(()),
} // }
} else { // } else {
p_address p_address
} // }
} }
fn traverse_page( fn traverse_page(
&mut self, &self,
v_address: u64, v_address: u64,
level: u8, level: u8,
parent_ppn: u64, parent_ppn: u64,
@ -724,98 +750,98 @@ impl Mmu {
} }
} }
pub struct MemoryWrapper { // pub struct MemoryWrapper {
memory: Memory, // memory: Memory,
dram_base: u64, // dram_base: u64,
} // }
impl MemoryWrapper { // impl MemoryWrapper {
fn new(dram_base: u64) -> Self { // fn new(dram_base: u64) -> Self {
MemoryWrapper { // MemoryWrapper {
memory: Memory::new(), // memory: Memory::new(),
dram_base, // dram_base,
} // }
} // }
fn init(&mut self, capacity: u64) { // fn init(&mut self, capacity: u64) {
self.memory.init(capacity); // self.memory.init(capacity);
} // }
pub fn read_byte(&self, p_address: u64) -> u8 { // pub fn read_byte(&self, p_address: u64) -> u8 {
debug_assert!( // debug_assert!(
p_address >= self.dram_base, // p_address >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.read_byte(p_address - self.dram_base) // self.memory.read_byte(p_address - self.dram_base)
} // }
pub fn read_halfword(&self, p_address: u64) -> u16 { // pub fn read_halfword(&self, p_address: u64) -> u16 {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(1) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(1) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.read_halfword(p_address - self.dram_base) // self.memory.read_halfword(p_address - self.dram_base)
} // }
pub fn read_word(&self, p_address: u64) -> u32 { // pub fn read_word(&self, p_address: u64) -> u32 {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(3) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(3) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.read_word(p_address - self.dram_base) // self.memory.read_word(p_address - self.dram_base)
} // }
pub fn read_doubleword(&self, p_address: u64) -> u64 { // pub fn read_doubleword(&self, p_address: u64) -> u64 {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(7) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(7) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.read_doubleword(p_address - self.dram_base) // self.memory.read_doubleword(p_address - self.dram_base)
} // }
pub fn write_byte(&mut self, p_address: u64, value: u8) { // pub fn write_byte(&mut self, p_address: u64, value: u8) {
debug_assert!( // debug_assert!(
p_address >= self.dram_base, // p_address >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.write_byte(p_address - self.dram_base, value) // self.memory.write_byte(p_address - self.dram_base, value)
} // }
pub fn write_halfword(&mut self, p_address: u64, value: u16) { // pub fn write_halfword(&mut self, p_address: u64, value: u16) {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(1) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(1) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory // self.memory
.write_halfword(p_address - self.dram_base, value) // .write_halfword(p_address - self.dram_base, value)
} // }
pub fn write_word(&mut self, p_address: u64, value: u32) { // pub fn write_word(&mut self, p_address: u64, value: u32) {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(3) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(3) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory.write_word(p_address - self.dram_base, value) // self.memory.write_word(p_address - self.dram_base, value)
} // }
pub fn write_doubleword(&mut self, p_address: u64, value: u64) { // pub fn write_doubleword(&mut self, p_address: u64, value: u64) {
debug_assert!( // debug_assert!(
p_address >= self.dram_base && p_address.wrapping_add(7) >= self.dram_base, // p_address >= self.dram_base && p_address.wrapping_add(7) >= self.dram_base,
"Memory address must equals to or bigger than self.dram_base. {:X}", // "Memory address must equals to or bigger than self.dram_base. {:X}",
p_address // p_address
); // );
self.memory // self.memory
.write_doubleword(p_address - self.dram_base, value) // .write_doubleword(p_address - self.dram_base, value)
} // }
pub fn validate_address(&self, address: u64) -> bool { // pub fn validate_address(&self, address: u64) -> bool {
self.memory.validate_address(address - self.dram_base) // self.memory.validate_address(address - self.dram_base)
} // }
} // }

View File

@ -1,27 +1,18 @@
mod xous; mod xous;
use std::io::Read; use std::io::Read;
use xous::XousHandler; use xous::Machine;
fn main() { fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut std_tests = Vec::new(); let mut std_tests = Vec::new();
std::fs::File::open("std-tests") std::fs::File::open("std-tests")
.expect("couldn't open std-tests") .expect("couldn't open std-tests")
.read_to_end(&mut std_tests) .read_to_end(&mut std_tests)
.expect("couldn't read std-tests"); .expect("couldn't read std-tests");
let mut cpu = riscv_cpu::CpuBuilder::new() let mut xous = Machine::new(&std_tests)?;
.memory_size(16 * 1024 * 1024)
.xlen(riscv_cpu::Xlen::Bit32)
.build();
let mut xous = XousHandler::new(&cpu); xous.run()?;
xous.load_program_to_cpu(&mut cpu, &std_tests)
.expect("couldn't load std-tests");
cpu.set_handler(Some(Box::new(xous))); Ok(())
for _tick in 0..1000 {
cpu.tick();
}
} }

View File

@ -1,7 +1,16 @@
use riscv_cpu::cpu::EventHandler; use riscv_cpu::cpu::Memory as OtherMemory;
mod definitions; mod definitions;
use definitions::{Syscall, SyscallNumber, SyscallResultNumber}; use definitions::{Syscall, SyscallNumber, SyscallResultNumber};
use std::{
collections::{BTreeSet, HashMap},
sync::{
mpsc::{Receiver, Sender},
Arc, RwLock,
},
};
const MEMORY_BASE: u32 = 0x8000_0000;
#[derive(Debug)] #[derive(Debug)]
pub enum LoadError { pub enum LoadError {
@ -35,51 +44,171 @@ const MMUFLAG_DIRTY: u32 = 0x80;
impl std::error::Error for LoadError {} impl std::error::Error for LoadError {}
pub struct XousHandler { struct Memory {
memory_base: u32, base: u32,
allocator_offset: u32, data: HashMap<usize, [u8; 4096]>,
satp: u32, allocated_pages: BTreeSet<usize>,
l1_pt: u32, free_pages: BTreeSet<usize>,
heap_start: u32, heap_start: u32,
heap_size: u32, heap_size: u32,
allocation_start: u32,
allocation_previous: u32,
l1_pt: u32,
satp: u32,
} }
impl XousHandler { enum WorkerCommand {
pub fn new(cpu: &riscv_cpu::Cpu) -> Self { Start,
let memory_base = cpu.memory_base() as u32; MemoryRange(u32 /* address */, u32 /* size */),
// let memory_size = cpu.memory_size(); }
enum WorkerResponse {
Started,
Exited(u32),
AllocateMemory(
u32, /* phys */
u32, /* virt */
u32, /* size */
u32, /* flags */
),
}
struct Worker {
cpu: riscv_cpu::Cpu,
tx: Sender<WorkerResponse>,
rx: Receiver<WorkerCommand>,
}
impl Worker {
fn new(
cpu: riscv_cpu::Cpu,
rx: Receiver<WorkerCommand>,
worker_response_tx: Sender<WorkerResponse>,
) -> Self {
Self { Self {
memory_base, cpu,
l1_pt: memory_base + 4096, tx: worker_response_tx,
allocator_offset: 8192, rx,
satp: ((4096 + memory_base) >> 12) | 0x8000_0000, }
heap_start: 0xa000_0000, }
fn run(&mut self) {
self.rx.recv().unwrap();
for _tick in 0..1000 {
self.cpu.tick();
}
self.tx.send(WorkerResponse::Exited(1)).unwrap();
}
}
struct WorkerHandle {
tx: Sender<WorkerCommand>,
}
impl Memory {
pub fn new(base: u32, size: usize) -> Self {
let mut data = HashMap::new();
let mut free_pages = BTreeSet::new();
let mut allocated_pages = BTreeSet::new();
for page in (base..(base + size as u32)).step_by(4096) {
data.insert(page as usize, [0; 4096]);
free_pages.insert(page as usize);
}
// Remove the l0 page table
free_pages.remove(&(MEMORY_BASE as usize + 4096));
allocated_pages.insert(MEMORY_BASE as usize + 4096);
Self {
base,
data,
allocated_pages,
free_pages,
l1_pt: MEMORY_BASE + 4096,
satp: ((4096 + MEMORY_BASE) >> 12) | 0x8000_0000,
heap_start: 0x6000_0000,
heap_size: 0, heap_size: 0,
allocation_previous: 0x4000_0000,
allocation_start: 0x4000_0000,
} }
} }
fn allocate_page(&mut self) -> u32 { fn allocate_page(&mut self) -> u32 {
let page = self.allocator_offset; let page = self.free_pages.pop_first().expect("out of memory");
self.allocator_offset += 4096; self.allocated_pages.insert(page);
page + self.memory_base page as u32
} }
fn write_bytes(&mut self, cpu: &mut riscv_cpu::Cpu, data: &[u8], start: u32) { fn allocate_virt_region(&mut self, size: usize) -> Option<u32> {
let mut start = self.allocation_previous;
// Find a free region that will fit this page.
'outer: loop {
for page in (start..(start + size as u32)).step_by(4096) {
if self.virt_to_phys(page).is_some() {
start = page + 4096;
continue 'outer;
}
}
break;
}
// Allocate the region
for page in (start..(start + size as u32)).step_by(4096) {
self.ensure_page(page);
}
self.allocation_previous = start + size as u32 + 4096;
Some(start)
}
fn ensure_page(&mut self, address: u32) {
let vpn1 = ((address >> 22) & ((1 << 10) - 1)) as usize * 4;
let vpn0 = ((address >> 12) & ((1 << 10) - 1)) as usize * 4;
// The root (l1) pagetable is defined to be mapped into our virtual
// address space at this address.
// If the level 1 pagetable doesn't exist, then this address is invalid
let mut l1_pt_entry = self.read_u32(self.l1_pt as u64 + vpn1 as u64);
if l1_pt_entry & MMUFLAG_VALID == 0 {
// Allocate a new page for the level 1 pagetable
let l0_pt_phys = self.allocate_page();
// println!("Allocating level 0 pagetable at {:08x}", l0_pt_phys);
l1_pt_entry =
((l0_pt_phys >> 12) << 10) | MMUFLAG_VALID | MMUFLAG_DIRTY | MMUFLAG_ACCESSED;
// Map the level 1 pagetable into the root pagetable
self.write_u32(self.l1_pt as u64 + vpn1 as u64, l1_pt_entry);
}
let l0_pt_phys = ((l1_pt_entry >> 10) << 12) + vpn0 as u32;
let mut l0_pt_entry = self.read_u32(l0_pt_phys as u64);
// Ensure the entry hasn't already been mapped.
if l0_pt_entry & MMUFLAG_VALID == 0 {
let page_phys = self.allocate_page();
l0_pt_entry = ((page_phys >> 12) << 10)
| MMUFLAG_VALID
| MMUFLAG_WRITABLE
| MMUFLAG_READABLE
| MMUFLAG_EXECUTABLE
| MMUFLAG_USERMODE
| MMUFLAG_DIRTY
| MMUFLAG_ACCESSED;
// Map the level 0 pagetable into the level 1 pagetable
self.write_u32(l0_pt_phys as u64, l0_pt_entry);
}
}
fn write_bytes(&mut self, data: &[u8], start: u32) {
for (i, byte) in data.iter().enumerate() { for (i, byte) in data.iter().enumerate() {
let i = i as u32; let i = i as u32;
self.ensure_page(cpu, start + i); self.ensure_page(start + i);
let phys = self.virt_to_phys(cpu, start + i).unwrap(); let phys = self.virt_to_phys(start + i).unwrap();
cpu.phys_write_u8(phys as u64, *byte); self.write_u8(phys as u64, *byte);
} }
} }
#[allow(dead_code)] #[allow(dead_code)]
pub fn print_mmu(&self, cpu: &riscv_cpu::Cpu) { pub fn print_mmu(&self) {
println!("Memory Map:"); println!("Memory Map:");
for vpn1 in (0..4096).step_by(4) { for vpn1 in (0..4096).step_by(4) {
let l1_entry = cpu.phys_read_u32(self.l1_pt as u64 + vpn1); let l1_entry = self.read_u32(self.l1_pt as u64 + vpn1);
if l1_entry & MMUFLAG_VALID == 0 { if l1_entry & MMUFLAG_VALID == 0 {
continue; continue;
} }
@ -94,7 +223,7 @@ impl XousHandler {
); );
for vpn0 in (0..4096).step_by(4) { for vpn0 in (0..4096).step_by(4) {
let l0_entry = cpu.phys_read_u32((((l1_entry >> 10) << 12) as u64) + vpn0 as u64); let l0_entry = self.read_u32((((l1_entry >> 10) << 12) as u64) + vpn0 as u64);
if l0_entry & 0x7 == 0 { if l0_entry & 0x7 == 0 {
continue; continue;
} }
@ -111,14 +240,14 @@ impl XousHandler {
} }
} }
pub fn virt_to_phys(&self, cpu: &riscv_cpu::Cpu, virt: u32) -> Option<u32> { pub fn virt_to_phys(&self, virt: u32) -> Option<u32> {
let vpn1 = ((virt >> 22) & ((1 << 10) - 1)) as usize * 4; let vpn1 = ((virt >> 22) & ((1 << 10) - 1)) as usize * 4;
let vpn0 = ((virt >> 12) & ((1 << 10) - 1)) as usize * 4; let vpn0 = ((virt >> 12) & ((1 << 10) - 1)) as usize * 4;
let offset = virt & ((1 << 12) - 1); let offset = virt & ((1 << 12) - 1);
// The root (l1) pagetable is defined to be mapped into our virtual // The root (l1) pagetable is defined to be mapped into our virtual
// address space at this address. // address space at this address.
let l1_pt_entry = cpu.phys_read_u32(self.l1_pt as u64 + vpn1 as u64); let l1_pt_entry = self.read_u32(self.l1_pt as u64 + vpn1 as u64);
// If the level 1 pagetable doesn't exist, then this address is invalid // If the level 1 pagetable doesn't exist, then this address is invalid
if l1_pt_entry & MMUFLAG_VALID == 0 { if l1_pt_entry & MMUFLAG_VALID == 0 {
@ -128,7 +257,7 @@ impl XousHandler {
return None; return None;
} }
let l0_pt_entry = cpu.phys_read_u32((((l1_pt_entry >> 10) << 12) + vpn0 as u32) as u64); let l0_pt_entry = self.read_u32((((l1_pt_entry >> 10) << 12) + vpn0 as u32) as u64);
// Ensure the entry hasn't already been mapped. // Ensure the entry hasn't already been mapped.
if l0_pt_entry & MMUFLAG_VALID == 0 { if l0_pt_entry & MMUFLAG_VALID == 0 {
@ -136,50 +265,213 @@ impl XousHandler {
} }
Some(((l0_pt_entry >> 10) << 12) | offset) Some(((l0_pt_entry >> 10) << 12) | offset)
} }
}
fn ensure_page(&mut self, cpu: &mut riscv_cpu::Cpu, address: u32) { impl riscv_cpu::cpu::Memory for Memory {
let vpn1 = ((address >> 22) & ((1 << 10) - 1)) as usize * 4; fn read_u8(&self, address: u64) -> u8 {
let vpn0 = ((address >> 12) & ((1 << 10) - 1)) as usize * 4; let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
// The root (l1) pagetable is defined to be mapped into our virtual self.data.get(&page).map(|page| page[offset]).unwrap_or(0)
// address space at this address.
// If the level 1 pagetable doesn't exist, then this address is invalid
let mut l1_pt_entry = cpu.phys_read_u32(self.l1_pt as u64 + vpn1 as u64);
if l1_pt_entry & MMUFLAG_VALID == 0 {
// Allocate a new page for the level 1 pagetable
let l0_pt_phys = self.allocate_page();
// println!("Allocating level 0 pagetable at {:08x}", l0_pt_phys);
l1_pt_entry =
((l0_pt_phys >> 12) << 10) | MMUFLAG_VALID | MMUFLAG_DIRTY | MMUFLAG_ACCESSED;
// Map the level 1 pagetable into the root pagetable
cpu.phys_write_u32(self.l1_pt as u64 + vpn1 as u64, l1_pt_entry);
} }
let l0_pt_phys = ((l1_pt_entry >> 10) << 12) + vpn0 as u32; fn read_u16(&self, address: u64) -> u16 {
let mut l0_pt_entry = cpu.phys_read_u32(l0_pt_phys as u64); let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
self.data
.get(&page)
.map(|page| u16::from_le_bytes([page[offset], page[offset + 1]]))
.unwrap_or(0)
}
// Ensure the entry hasn't already been mapped. fn read_u32(&self, address: u64) -> u32 {
if l0_pt_entry & MMUFLAG_VALID == 0 { let page = address as usize & !0xfff;
let page_phys = self.allocate_page(); let offset = address as usize & 0xfff;
l0_pt_entry = ((page_phys >> 12) << 10) self.data
| MMUFLAG_VALID .get(&page)
| MMUFLAG_WRITABLE .map(|page| {
| MMUFLAG_READABLE u32::from_le_bytes([
| MMUFLAG_EXECUTABLE page[offset],
| MMUFLAG_USERMODE page[offset + 1],
| MMUFLAG_DIRTY page[offset + 2],
| MMUFLAG_ACCESSED; page[offset + 3],
// Map the level 0 pagetable into the level 1 pagetable ])
cpu.phys_write_u32(l0_pt_phys as u64, l0_pt_entry); })
.unwrap_or(0)
}
fn read_u64(&self, address: u64) -> u64 {
let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
self.data
.get(&page)
.map(|page| {
u64::from_le_bytes([
page[offset],
page[offset + 1],
page[offset + 2],
page[offset + 3],
page[offset + 4],
page[offset + 5],
page[offset + 6],
page[offset + 7],
])
})
.unwrap_or(0)
}
fn write_u8(&mut self, address: u64, value: u8) {
let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
if let Some(page) = self.data.get_mut(&page) {
page[offset] = value;
} }
} }
pub fn load_program_to_cpu( fn write_u16(&mut self, address: u64, value: u16) {
&mut self, let page = address as usize & !0xfff;
cpu: &mut riscv_cpu::Cpu, let offset = address as usize & 0xfff;
program: &[u8], if let Some(page) = self.data.get_mut(&page) {
) -> Result<(), LoadError> { let bytes = value.to_le_bytes();
page[offset] = bytes[0];
page[offset + 1] = bytes[1];
}
}
fn write_u32(&mut self, address: u64, value: u32) {
let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
if let Some(page) = self.data.get_mut(&page) {
let bytes = value.to_le_bytes();
page[offset] = bytes[0];
page[offset + 1] = bytes[1];
page[offset + 2] = bytes[2];
page[offset + 3] = bytes[3];
}
}
fn write_u64(&mut self, address: u64, value: u64) {
let page = address as usize & !0xfff;
let offset = address as usize & 0xfff;
if let Some(page) = self.data.get_mut(&page) {
let bytes = value.to_le_bytes();
page[offset] = bytes[0];
page[offset + 1] = bytes[1];
page[offset + 2] = bytes[2];
page[offset + 3] = bytes[3];
page[offset + 4] = bytes[4];
page[offset + 5] = bytes[5];
page[offset + 6] = bytes[6];
page[offset + 7] = bytes[7];
}
}
fn validate_address(&self, address: u64) -> bool {
if address < self.base as u64 {
return false;
}
let address = address as usize - self.base as usize;
address < self.data.len()
}
fn syscall(&mut self, args: [i64; 8]) -> [i64; 8] {
let syscall: Syscall = args.into();
println!("Syscall {:?} with args: {:?}", syscall, &args[1..]);
print!("Syscall: ");
match syscall {
Syscall::IncreaseHeap(bytes, _flags) => {
println!("IncreaseHeap({} bytes, flags: {:02x})", bytes, _flags);
let heap_start = self.heap_start;
let heap_address = self.heap_start + self.heap_size;
match bytes {
bytes if bytes < 0 => {
self.heap_size -= bytes.unsigned_abs() as u32;
panic!("Reducing size not supported!");
}
bytes if bytes > 0 => {
for new_address in
(heap_address..(heap_address + bytes as u32)).step_by(4096)
{
self.ensure_page(new_address);
}
self.heap_size += bytes as u32;
}
_ => {}
}
[
SyscallResultNumber::MemoryRange as i64,
heap_address as i64,
bytes,
0,
0,
0,
0,
0,
]
}
Syscall::MapMemory(phys, virt, size, _flags) => {
if virt != 0 {
unimplemented!("Non-zero virt address");
}
if phys != 0 {
unimplemented!("Non-zero phys address");
}
let region = self
.allocate_virt_region(size as usize)
.expect("out of memory");
[
SyscallResultNumber::MemoryRange as i64,
region as i64,
size,
0,
0,
0,
0,
0,
]
}
Syscall::Unknown(args) => {
println!(
"Unhandled {:?}: {:?}",
SyscallNumber::from(args[0]),
&args[1..]
);
[SyscallResultNumber::Unimplemented as _, 0, 0, 0, 0, 0, 0, 0]
}
}
}
}
pub struct Machine {
memory: Arc<RwLock<Memory>>,
workers: Vec<WorkerHandle>,
worker_response: Receiver<WorkerResponse>,
worker_response_tx: Sender<WorkerResponse>,
}
impl Machine {
pub fn new(program: &[u8]) -> Result<Self, LoadError> {
let memory = Arc::new(RwLock::new(Memory::new(MEMORY_BASE, 16 * 1024 * 1024)));
let (worker_response_tx, worker_response) = std::sync::mpsc::channel();
let mut machine = Self {
memory,
workers: vec![],
worker_response_tx,
worker_response,
};
machine.load_program(program)?;
Ok(machine)
}
pub fn load_program(&mut self, program: &[u8]) -> Result<(), LoadError> {
let mut cpu = riscv_cpu::CpuBuilder::new(self.memory.clone())
.xlen(riscv_cpu::Xlen::Bit32)
.build();
let goblin::Object::Elf(elf) = let goblin::Object::Elf(elf) =
goblin::Object::parse(program).map_err(|_| LoadError::IncorrectFormat)? goblin::Object::parse(program).map_err(|_| LoadError::IncorrectFormat)?
else { else {
@ -189,43 +481,34 @@ impl XousHandler {
return Err(LoadError::BitSizeError); return Err(LoadError::BitSizeError);
} }
let mut memory_writer = self.memory.write().unwrap();
for sh in elf.section_headers { for sh in elf.section_headers {
if sh.sh_flags as u32 & goblin::elf::section_header::SHF_ALLOC == 0 { if sh.sh_flags as u32 & goblin::elf::section_header::SHF_ALLOC == 0 {
continue; continue;
} }
if sh.sh_type & goblin::elf::section_header::SHT_NOBITS != 0 { if sh.sh_type & goblin::elf::section_header::SHT_NOBITS != 0 {
for addr in sh.sh_addr..(sh.sh_addr + sh.sh_size) { for addr in sh.sh_addr..(sh.sh_addr + sh.sh_size) {
self.ensure_page(cpu, addr.try_into().unwrap()); memory_writer.ensure_page(addr.try_into().unwrap());
// self.write_virt_u8(cpu, addr.try_into().unwrap(), 0);
} }
} else { } else {
self.write_bytes( memory_writer.write_bytes(
cpu,
&program[sh.sh_offset as usize..(sh.sh_offset + sh.sh_size) as usize], &program[sh.sh_offset as usize..(sh.sh_offset + sh.sh_size) as usize],
sh.sh_addr.try_into().unwrap(), sh.sh_addr.try_into().unwrap(),
); );
} }
} }
self.print_mmu(cpu); memory_writer.print_mmu();
// TODO: Get memory permissions correct // TODO: Get memory permissions correct
let satp = self.satp.into(); let satp = memory_writer.satp.into();
// Ensure stack is allocated // Ensure stack is allocated
for page in (0xc000_0000..0xc002_0000).step_by(4096) { for page in (0xc000_0000..0xc002_0000).step_by(4096) {
self.ensure_page(cpu, page); memory_writer.ensure_page(page);
} }
// for (offset, byte) in shadow_memory.into_iter().enumerate() {
// if byte == 0 {
// continue;
// }
// // println!("Writing {:02x} to {:08x}", byte, offset as u64 + memory_base);
// cpu.phys_write_u8(offset as u64 + memory_base, byte);
// }
cpu.write_csr(riscv_cpu::cpu::CSR_SATP_ADDRESS, satp) cpu.write_csr(riscv_cpu::cpu::CSR_SATP_ADDRESS, satp)
.map_err(|_| LoadError::SatpWriteError)?; .map_err(|_| LoadError::SatpWriteError)?;
cpu.update_pc(elf.entry); cpu.update_pc(elf.entry);
@ -243,53 +526,38 @@ impl XousHandler {
// Update the stack pointer // Update the stack pointer
cpu.write_register(2, 0xc002_0000 - 4); cpu.write_register(2, 0xc002_0000 - 4);
let (tx, rx) = std::sync::mpsc::channel();
let worker_tx = self.worker_response_tx.clone();
let mem = self.memory.clone();
std::thread::spawn(move || Worker::new(cpu, rx, worker_tx).run());
self.workers.push(WorkerHandle { tx });
Ok(())
}
pub fn run(&mut self) -> Result<(), Box<dyn std::error::Error>> {
self.workers[0].tx.send(WorkerCommand::Start)?;
self.worker_response.recv().unwrap();
Ok(()) Ok(())
} }
} }
impl XousHandler { // impl SyscallHandler for Worker {
fn syscall(&mut self, cpu: &mut riscv_cpu::Cpu, syscall: Syscall) -> [i64; 8] { // fn syscall(&mut self, cpu: &mut riscv_cpu::Cpu, args: [i64; 8]) -> [i64; 8] {
print!("Syscall: "); // let syscall: Syscall = args.into();
match syscall { // println!("Syscall {:?} with args: {:?}", syscall, &args[1..]);
Syscall::IncreaseHeap(bytes, _flags) => { // // self.syscall(cpu, syscall)
println!("IncreaseHeap({} bytes, flags: {:02x})", bytes, _flags); // [
let heap_address = self.heap_start + self.heap_size; // SyscallResultNumber::Unimplemented as i64,
match bytes { // 0,
bytes if bytes < 0 => { // 0,
self.heap_size -= bytes.unsigned_abs() as u32; // 0,
panic!("Reducing size not supported!"); // 0,
}, // 0,
bytes if bytes > 0 => { // 0,
for new_address in (heap_address..(heap_address + bytes as u32)).step_by(4096) { // 0,
self.ensure_page(cpu, new_address); // ]
} // }
self.heap_size += bytes as u32; // }
},
_ => {},
}
[
SyscallResultNumber::MemoryRange as i64,
heap_address as i64,
bytes,
0,
0,
0,
0,
0,
]
}
Syscall::Unknown(args) => {
println!("Unhandled {:?}: {:?}", SyscallNumber::from(args[0]), &args[1..]);
[SyscallResultNumber::Unimplemented as _, 0, 0, 0, 0, 0, 0, 0]
}
}
}
}
impl EventHandler for XousHandler {
fn handle_event(&mut self, cpu: &mut riscv_cpu::Cpu, args: [i64; 8]) -> [i64; 8] {
let syscall: Syscall = args.into();
// println!("Syscall {:?} with args: {:?}", syscall, &args[1..]);
self.syscall(cpu, syscall)
}
}

View File

@ -22,6 +22,12 @@ pub enum Syscall {
i64, /* number of bytes to add */ i64, /* number of bytes to add */
i64, /* memory flags */ i64, /* memory flags */
), ),
MapMemory(
i64, /* address */
i64, /* size */
i64, /* flags */
i64, /* name */
),
} }
#[derive(Debug)] #[derive(Debug)]
@ -50,6 +56,7 @@ impl From<[i64; 8]> for Syscall {
fn from(value: [i64; 8]) -> Self { fn from(value: [i64; 8]) -> Self {
match value[0].into() { match value[0].into() {
SyscallNumber::IncreaseHeap => Syscall::IncreaseHeap(value[1], value[2]), SyscallNumber::IncreaseHeap => Syscall::IncreaseHeap(value[1], value[2]),
SyscallNumber::MapMemory => Syscall::MapMemory(value[1], value[2], value[3], value[4]),
_ => Syscall::Unknown(value), _ => Syscall::Unknown(value),
} }
} }