pull cpu into its own crate

Signed-off-by: Sean Cross <sean@xobs.io>
This commit is contained in:
2023-12-29 23:09:32 +08:00
parent 9ae18afa67
commit 2e6ae9fc5d
9 changed files with 103 additions and 33 deletions

View File

@ -0,0 +1,8 @@
[package]
name = "riscv-cpu"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

4150
crates/riscv-cpu/src/cpu.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
pub mod cpu;
pub mod memory;
pub mod mmu;
pub use cpu::{Cpu, CpuBuilder, Xlen};

View File

@ -0,0 +1,169 @@
/// Emulates main memory.
pub struct Memory {
/// Memory content
data: Vec<u64>
}
impl Memory {
/// Creates a new `Memory`
pub fn new() -> Self {
Memory {
data: vec![]
}
}
/// Initializes memory content.
/// This method is expected to be called only once.
///
/// # Arguments
/// * `capacity`
pub fn init(&mut self, capacity: u64) {
for _i in 0..((capacity + 7) / 8) {
self.data.push(0);
}
}
/// Reads a byte from memory.
///
/// # Arguments
/// * `address`
pub fn read_byte(&self, address: u64) -> u8 {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
(self.data[index] >> pos) as u8
}
/// Reads two bytes from memory.
///
/// # Arguments
/// * `address`
pub fn read_halfword(&self, address: u64) -> u16 {
if (address % 2) == 0 {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
(self.data[index] >> pos) as u16
} else {
self.read_bytes(address, 2) as u16
}
}
/// Reads four bytes from memory.
///
/// # Arguments
/// * `address`
pub fn read_word(&self, address: u64) -> u32 {
if (address % 4) == 0 {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
(self.data[index] >> pos) as u32
} else {
self.read_bytes(address, 4) as u32
}
}
/// Reads eight bytes from memory.
///
/// # Arguments
/// * `address`
pub fn read_doubleword(&self, address: u64) -> u64 {
if (address % 8) == 0 {
let index = (address >> 3) as usize;
self.data[index]
} else if (address % 4) == 0 {
(self.read_word(address) as u64) | ((self.read_word(address.wrapping_add(4)) as u64) << 4)
} else {
self.read_bytes(address, 8)
}
}
/// Reads multiple bytes from memory.
///
/// # Arguments
/// * `address`
/// * `width` up to eight
pub fn read_bytes(&self, address: u64, width: u64) -> u64 {
let mut data = 0 as u64;
for i in 0..width {
data |= (self.read_byte(address.wrapping_add(i)) as u64) << (i * 8);
}
data
}
/// Writes a byte to memory.
///
/// # Arguments
/// * `address`
/// * `value`
pub fn write_byte(&mut self, address: u64, value: u8) {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
self.data[index] = (self.data[index] & !(0xff << pos)) | ((value as u64) << pos);
}
/// Writes two bytes to memory.
///
/// # Arguments
/// * `address`
/// * `value`
pub fn write_halfword(&mut self, address: u64, value: u16) {
if (address % 2) == 0 {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
self.data[index] = (self.data[index] & !(0xffff << pos)) | ((value as u64) << pos);
} else {
self.write_bytes(address, value as u64, 2);
}
}
/// Writes four bytes to memory.
///
/// # Arguments
/// * `address`
/// * `value`
pub fn write_word(&mut self, address: u64, value: u32) {
if (address % 4) == 0 {
let index = (address >> 3) as usize;
let pos = ((address % 8) as u64) * 8;
self.data[index] = (self.data[index] & !(0xffffffff << pos)) | ((value as u64) << pos);
} else {
self.write_bytes(address, value as u64, 4);
}
}
/// Writes eight bytes to memory.
///
/// # Arguments
/// * `address`
/// * `value`
pub fn write_doubleword(&mut self, address: u64, value: u64) {
if (address % 8) == 0 {
let index = (address >> 3) as usize;
self.data[index] = value;
} else if (address % 4) == 0 {
self.write_word(address, (value & 0xffffffff) as u32);
self.write_word(address.wrapping_add(4), (value >> 32) as u32);
} else {
self.write_bytes(address, value, 8);
}
}
/// Write multiple bytes to memory.
///
/// # Arguments
/// * `address`
/// * `value`
/// * `width` up to eight
pub fn write_bytes(&mut self, address: u64, value: u64, width: u64) {
for i in 0..width {
self.write_byte(address.wrapping_add(i), (value >> (i * 8)) as u8);
}
}
/// Check if the address is valid memory address
///
/// # Arguments
/// * `address`
pub fn validate_address(&self, address: u64) -> bool {
return (address as usize) < self.data.len()
}
}

962
crates/riscv-cpu/src/mmu.rs Normal file
View File

@ -0,0 +1,962 @@
/// DRAM base address. Offset from this base address
/// is the address in main memory.
pub const DRAM_BASE: u64 = 0x80000000;
use std::collections::HashMap;
use crate::{
cpu::{get_privilege_mode, PrivilegeMode, Trap, TrapType, Xlen},
memory::Memory,
};
/// Emulates Memory Management Unit. It holds the Main memory and peripheral
/// devices, maps address to them, and accesses them depending on address.
/// It also manages virtual-physical address translation and memoty protection.
/// It may also be said Bus.
/// @TODO: Memory protection is not implemented yet. We should support.
pub struct Mmu {
clock: u64,
xlen: Xlen,
ppn: u64,
addressing_mode: AddressingMode,
privilege_mode: PrivilegeMode,
memory: MemoryWrapper,
/// Address translation can be affected `mstatus` (MPRV, MPP in machine mode)
/// then `Mmu` has copy of it.
mstatus: u64,
/// Address translation page cache. Experimental feature.
/// The cache is cleared when translation mapping can be changed;
/// xlen, ppn, privilege_mode, or addressing_mode is updated.
/// Precisely it isn't good enough because page table entries
/// can be updated anytime with store instructions, of course
/// very depending on how pages are mapped tho.
/// But observing all page table entries is high cost so
/// ignoring so far. Then this cache optimization can cause a bug
/// due to unexpected (meaning not in page fault handler)
/// page table entry update. So this is experimental feature and
/// disabled by default. If you want to enable, use `enable_page_cache()`.
page_cache_enabled: bool,
fetch_page_cache: HashMap<u64, u64>,
load_page_cache: HashMap<u64, u64>,
store_page_cache: HashMap<u64, u64>,
}
pub enum AddressingMode {
None,
SV32,
SV39,
SV48, // @TODO: Implement
}
enum MemoryAccessType {
Execute,
Read,
Write,
DontCare,
}
fn _get_addressing_mode_name(mode: &AddressingMode) -> &'static str {
match mode {
AddressingMode::None => "None",
AddressingMode::SV32 => "SV32",
AddressingMode::SV39 => "SV39",
AddressingMode::SV48 => "SV48",
}
}
impl Mmu {
/// Creates a new `Mmu`.
///
/// # Arguments
/// * `xlen`
/// * `terminal`
pub fn new(xlen: Xlen) -> Self {
// // Load default device tree binary content
// let content = include_bytes!("./device/dtb.dtb");
// for i in 0..content.len() {
// dtb[i] = content[i];
// }
Mmu {
clock: 0,
xlen,
ppn: 0,
addressing_mode: AddressingMode::None,
privilege_mode: PrivilegeMode::Machine,
memory: MemoryWrapper::new(),
mstatus: 0,
page_cache_enabled: false,
fetch_page_cache: HashMap::default(),
load_page_cache: HashMap::default(),
store_page_cache: HashMap::default(),
}
}
/// Updates XLEN, 32-bit or 64-bit
///
/// # Arguments
/// * `xlen`
pub fn update_xlen(&mut self, xlen: Xlen) {
self.xlen = xlen;
self.clear_page_cache();
}
/// Initializes Main memory. This method is expected to be called only once.
///
/// # Arguments
/// * `capacity`
pub fn init_memory(&mut self, capacity: u64) {
self.memory.init(capacity);
}
/// Enables or disables page cache optimization.
///
/// # Arguments
/// * `enabled`
pub fn enable_page_cache(&mut self, enabled: bool) {
self.page_cache_enabled = enabled;
self.clear_page_cache();
}
/// Clears page cache entries
fn clear_page_cache(&mut self) {
self.fetch_page_cache.clear();
self.load_page_cache.clear();
self.store_page_cache.clear();
}
/// Runs one cycle of MMU and peripheral devices.
pub fn tick(&mut self, mip: &mut u64) {}
/// Updates addressing mode
///
/// # Arguments
/// * `new_addressing_mode`
pub fn update_addressing_mode(&mut self, new_addressing_mode: AddressingMode) {
self.addressing_mode = new_addressing_mode;
self.clear_page_cache();
}
/// Updates privilege mode
///
/// # Arguments
/// * `mode`
pub fn update_privilege_mode(&mut self, mode: PrivilegeMode) {
self.privilege_mode = mode;
self.clear_page_cache();
}
/// Updates mstatus copy. `CPU` needs to call this method whenever
/// `mstatus` is updated.
///
/// # Arguments
/// * `mstatus`
pub fn update_mstatus(&mut self, mstatus: u64) {
self.mstatus = mstatus;
}
/// Updates PPN used for address translation
///
/// # Arguments
/// * `ppn`
pub fn update_ppn(&mut self, ppn: u64) {
self.ppn = ppn;
self.clear_page_cache();
}
fn get_effective_address(&self, address: u64) -> u64 {
match self.xlen {
Xlen::Bit32 => address & 0xffffffff,
Xlen::Bit64 => address,
}
}
/// Fetches an instruction byte. This method takes virtual address
/// and translates into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
fn fetch(&mut self, v_address: u64) -> Result<u8, Trap> {
match self.translate_address(v_address, &MemoryAccessType::Execute) {
Ok(p_address) => Ok(self.load_raw(p_address)),
Err(()) => {
return Err(Trap {
trap_type: TrapType::InstructionPageFault,
value: v_address,
})
}
}
}
/// Fetches instruction four bytes. This method takes virtual address
/// and translates into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn fetch_word(&mut self, v_address: u64) -> Result<u32, Trap> {
let width = 4;
match (v_address & 0xfff) <= (0x1000 - width) {
true => {
// Fast path. All bytes fetched are in the same page so
// translating an address only once.
let effective_address = self.get_effective_address(v_address);
match self.translate_address(effective_address, &MemoryAccessType::Execute) {
Ok(p_address) => Ok(self.load_word_raw(p_address)),
Err(()) => Err(Trap {
trap_type: TrapType::InstructionPageFault,
value: effective_address,
}),
}
}
false => {
let mut data = 0 as u32;
for i in 0..width {
match self.fetch(v_address.wrapping_add(i)) {
Ok(byte) => data |= (byte as u32) << (i * 8),
Err(e) => return Err(e),
};
}
Ok(data)
}
}
}
/// Loads an byte. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn load(&mut self, v_address: u64) -> Result<u8, Trap> {
let effective_address = self.get_effective_address(v_address);
match self.translate_address(effective_address, &MemoryAccessType::Read) {
Ok(p_address) => Ok(self.load_raw(p_address)),
Err(()) => Err(Trap {
trap_type: TrapType::LoadPageFault,
value: v_address,
}),
}
}
/// Loads multiple bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `width` Must be 1, 2, 4, or 8
fn load_bytes(&mut self, v_address: u64, width: u64) -> Result<u64, Trap> {
debug_assert!(
width == 1 || width == 2 || width == 4 || width == 8,
"Width must be 1, 2, 4, or 8. {:X}",
width
);
match (v_address & 0xfff) <= (0x1000 - width) {
true => match self.translate_address(v_address, &MemoryAccessType::Read) {
Ok(p_address) => {
// Fast path. All bytes fetched are in the same page so
// translating an address only once.
match width {
1 => Ok(self.load_raw(p_address) as u64),
2 => Ok(self.load_halfword_raw(p_address) as u64),
4 => Ok(self.load_word_raw(p_address) as u64),
8 => Ok(self.load_doubleword_raw(p_address)),
_ => panic!("Width must be 1, 2, 4, or 8. {:X}", width),
}
}
Err(()) => Err(Trap {
trap_type: TrapType::LoadPageFault,
value: v_address,
}),
},
false => {
let mut data = 0 as u64;
for i in 0..width {
match self.load(v_address.wrapping_add(i)) {
Ok(byte) => data |= (byte as u64) << (i * 8),
Err(e) => return Err(e),
};
}
Ok(data)
}
}
}
/// Loads two bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn load_halfword(&mut self, v_address: u64) -> Result<u16, Trap> {
match self.load_bytes(v_address, 2) {
Ok(data) => Ok(data as u16),
Err(e) => Err(e),
}
}
/// Loads four bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn load_word(&mut self, v_address: u64) -> Result<u32, Trap> {
match self.load_bytes(v_address, 4) {
Ok(data) => Ok(data as u32),
Err(e) => Err(e),
}
}
/// Loads eight bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn load_doubleword(&mut self, v_address: u64) -> Result<u64, Trap> {
match self.load_bytes(v_address, 8) {
Ok(data) => Ok(data as u64),
Err(e) => Err(e),
}
}
/// Store an byte. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `value`
pub fn store(&mut self, v_address: u64, value: u8) -> Result<(), Trap> {
match self.translate_address(v_address, &MemoryAccessType::Write) {
Ok(p_address) => {
self.store_raw(p_address, value);
Ok(())
}
Err(()) => Err(Trap {
trap_type: TrapType::StorePageFault,
value: v_address,
}),
}
}
/// Stores multiple bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `value` data written
/// * `width` Must be 1, 2, 4, or 8
fn store_bytes(&mut self, v_address: u64, value: u64, width: u64) -> Result<(), Trap> {
debug_assert!(
width == 1 || width == 2 || width == 4 || width == 8,
"Width must be 1, 2, 4, or 8. {:X}",
width
);
match (v_address & 0xfff) <= (0x1000 - width) {
true => match self.translate_address(v_address, &MemoryAccessType::Write) {
Ok(p_address) => {
// Fast path. All bytes fetched are in the same page so
// translating an address only once.
match width {
1 => self.store_raw(p_address, value as u8),
2 => self.store_halfword_raw(p_address, value as u16),
4 => self.store_word_raw(p_address, value as u32),
8 => self.store_doubleword_raw(p_address, value),
_ => panic!("Width must be 1, 2, 4, or 8. {:X}", width),
}
Ok(())
}
Err(()) => Err(Trap {
trap_type: TrapType::StorePageFault,
value: v_address,
}),
},
false => {
for i in 0..width {
match self.store(v_address.wrapping_add(i), ((value >> (i * 8)) & 0xff) as u8) {
Ok(()) => {}
Err(e) => return Err(e),
}
}
Ok(())
}
}
}
/// Stores two bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `value` data written
pub fn store_halfword(&mut self, v_address: u64, value: u16) -> Result<(), Trap> {
self.store_bytes(v_address, value as u64, 2)
}
/// Stores four bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `value` data written
pub fn store_word(&mut self, v_address: u64, value: u32) -> Result<(), Trap> {
self.store_bytes(v_address, value as u64, 4)
}
/// Stores eight bytes. This method takes virtual address and translates
/// into physical address inside.
///
/// # Arguments
/// * `v_address` Virtual address
/// * `value` data written
pub fn store_doubleword(&mut self, v_address: u64, value: u64) -> Result<(), Trap> {
self.store_bytes(v_address, value as u64, 8)
}
/// Loads a byte from main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
fn load_raw(&mut self, p_address: u64) -> u8 {
let effective_address = self.get_effective_address(p_address);
// @TODO: Mapping should be configurable with dtb
match effective_address >= DRAM_BASE {
true => self.memory.read_byte(effective_address),
false => match effective_address {
// // I don't know why but dtb data seems to be stored from 0x1020 on Linux.
// // It might be from self.x[0xb] initialization?
// // And DTB size is arbitray.
// 0x00001020..=0x00001fff => self.dtb[effective_address as usize - 0x1020],
// 0x02000000..=0x0200ffff => self.clint.load(effective_address),
// 0x0C000000..=0x0fffffff => self.plic.load(effective_address),
// 0x10000000..=0x100000ff => self.uart.load(effective_address),
// 0x10001000..=0x10001FFF => self.disk.load(effective_address),
_ => panic!("Unknown memory mapping {:X}.", effective_address),
},
}
}
/// Loads two bytes from main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
fn load_halfword_raw(&mut self, p_address: u64) -> u16 {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(1) > effective_address
{
// Fast path. Directly load main memory at a time.
true => self.memory.read_halfword(effective_address),
false => {
let mut data = 0 as u16;
for i in 0..2 {
data |= (self.load_raw(effective_address.wrapping_add(i)) as u16) << (i * 8)
}
data
}
}
}
/// Loads four bytes from main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
pub fn load_word_raw(&mut self, p_address: u64) -> u32 {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(3) > effective_address
{
// Fast path. Directly load main memory at a time.
true => self.memory.read_word(effective_address),
false => {
let mut data = 0 as u32;
for i in 0..4 {
data |= (self.load_raw(effective_address.wrapping_add(i)) as u32) << (i * 8)
}
data
}
}
}
/// Loads eight bytes from main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
fn load_doubleword_raw(&mut self, p_address: u64) -> u64 {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(7) > effective_address
{
// Fast path. Directly load main memory at a time.
true => self.memory.read_doubleword(effective_address),
false => {
let mut data = 0 as u64;
for i in 0..8 {
data |= (self.load_raw(effective_address.wrapping_add(i)) as u64) << (i * 8)
}
data
}
}
}
/// Stores a byte to main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
/// * `value` data written
pub fn store_raw(&mut self, p_address: u64, value: u8) {
let effective_address = self.get_effective_address(p_address);
// @TODO: Mapping should be configurable with dtb
match effective_address >= DRAM_BASE {
true => self.memory.write_byte(effective_address, value),
false => match effective_address {
// 0x02000000..=0x0200ffff => self.clint.store(effective_address, value),
// 0x0c000000..=0x0fffffff => self.plic.store(effective_address, value),
// 0x10000000..=0x100000ff => self.uart.store(effective_address, value),
// 0x10001000..=0x10001FFF => self.disk.store(effective_address, value),
_ => panic!("Unknown memory mapping {:X}.", effective_address),
},
};
}
/// Stores two bytes to main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
/// * `value` data written
fn store_halfword_raw(&mut self, p_address: u64, value: u16) {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(1) > effective_address
{
// Fast path. Directly store to main memory at a time.
true => self.memory.write_halfword(effective_address, value),
false => {
for i in 0..2 {
self.store_raw(
effective_address.wrapping_add(i),
((value >> (i * 8)) & 0xff) as u8,
);
}
}
}
}
/// Stores four bytes to main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
/// * `value` data written
fn store_word_raw(&mut self, p_address: u64, value: u32) {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(3) > effective_address
{
// Fast path. Directly store to main memory at a time.
true => self.memory.write_word(effective_address, value),
false => {
for i in 0..4 {
self.store_raw(
effective_address.wrapping_add(i),
((value >> (i * 8)) & 0xff) as u8,
);
}
}
}
}
/// Stores eight bytes to main memory or peripheral devices depending on
/// physical address.
///
/// # Arguments
/// * `p_address` Physical address
/// * `value` data written
fn store_doubleword_raw(&mut self, p_address: u64, value: u64) {
let effective_address = self.get_effective_address(p_address);
match effective_address >= DRAM_BASE
&& effective_address.wrapping_add(7) > effective_address
{
// Fast path. Directly store to main memory at a time.
true => self.memory.write_doubleword(effective_address, value),
false => {
for i in 0..8 {
self.store_raw(
effective_address.wrapping_add(i),
((value >> (i * 8)) & 0xff) as u8,
);
}
}
}
}
/// Checks if passed virtual address is valid (pointing a certain device) or not.
/// This method can return page fault trap.
///
/// # Arguments
/// * `v_address` Virtual address
pub fn validate_address(&mut self, v_address: u64) -> Result<bool, ()> {
// @TODO: Support other access types?
let p_address = match self.translate_address(v_address, &MemoryAccessType::DontCare) {
Ok(address) => address,
Err(()) => return Err(()),
};
let effective_address = self.get_effective_address(p_address);
let valid = match effective_address >= DRAM_BASE {
true => self.memory.validate_address(effective_address),
false => match effective_address {
0x00001020..=0x00001fff => true,
0x02000000..=0x0200ffff => true,
0x0C000000..=0x0fffffff => true,
0x10000000..=0x100000ff => true,
0x10001000..=0x10001FFF => true,
_ => false,
},
};
Ok(valid)
}
fn translate_address(
&mut self,
v_address: u64,
access_type: &MemoryAccessType,
) -> Result<u64, ()> {
let address = self.get_effective_address(v_address);
let v_page = address & !0xfff;
let cache = match self.page_cache_enabled {
true => match access_type {
MemoryAccessType::Execute => self.fetch_page_cache.get(&v_page),
MemoryAccessType::Read => self.load_page_cache.get(&v_page),
MemoryAccessType::Write => self.store_page_cache.get(&v_page),
MemoryAccessType::DontCare => None,
},
false => None,
};
match cache {
Some(p_page) => Ok(p_page | (address & 0xfff)),
None => {
let p_address = match self.addressing_mode {
AddressingMode::None => Ok(address),
AddressingMode::SV32 => match self.privilege_mode {
// @TODO: Optimize
PrivilegeMode::Machine => match access_type {
MemoryAccessType::Execute => Ok(address),
// @TODO: Remove magic number
_ => match (self.mstatus >> 17) & 1 {
0 => Ok(address),
_ => {
let privilege_mode =
get_privilege_mode((self.mstatus >> 9) & 3);
match privilege_mode {
PrivilegeMode::Machine => Ok(address),
_ => {
let current_privilege_mode =
self.privilege_mode.clone();
self.update_privilege_mode(privilege_mode);
let result =
self.translate_address(v_address, access_type);
self.update_privilege_mode(current_privilege_mode);
result
}
}
}
},
},
PrivilegeMode::User | PrivilegeMode::Supervisor => {
let vpns = [(address >> 12) & 0x3ff, (address >> 22) & 0x3ff];
self.traverse_page(address, 2 - 1, self.ppn, &vpns, &access_type)
}
_ => Ok(address),
},
AddressingMode::SV39 => match self.privilege_mode {
// @TODO: Optimize
// @TODO: Remove duplicated code with SV32
PrivilegeMode::Machine => match access_type {
MemoryAccessType::Execute => Ok(address),
// @TODO: Remove magic number
_ => match (self.mstatus >> 17) & 1 {
0 => Ok(address),
_ => {
let privilege_mode =
get_privilege_mode((self.mstatus >> 9) & 3);
match privilege_mode {
PrivilegeMode::Machine => Ok(address),
_ => {
let current_privilege_mode =
self.privilege_mode.clone();
self.update_privilege_mode(privilege_mode);
let result =
self.translate_address(v_address, access_type);
self.update_privilege_mode(current_privilege_mode);
result
}
}
}
},
},
PrivilegeMode::User | PrivilegeMode::Supervisor => {
let vpns = [
(address >> 12) & 0x1ff,
(address >> 21) & 0x1ff,
(address >> 30) & 0x1ff,
];
self.traverse_page(address, 3 - 1, self.ppn, &vpns, &access_type)
}
_ => Ok(address),
},
AddressingMode::SV48 => {
panic!("AddressingMode SV48 is not supported yet.");
}
};
match self.page_cache_enabled {
true => match p_address {
Ok(p_address) => {
let p_page = p_address & !0xfff;
match access_type {
MemoryAccessType::Execute => {
self.fetch_page_cache.insert(v_page, p_page)
}
MemoryAccessType::Read => {
self.load_page_cache.insert(v_page, p_page)
}
MemoryAccessType::Write => {
self.store_page_cache.insert(v_page, p_page)
}
MemoryAccessType::DontCare => None,
};
Ok(p_address)
}
Err(()) => Err(()),
},
false => p_address,
}
}
}
}
fn traverse_page(
&mut self,
v_address: u64,
level: u8,
parent_ppn: u64,
vpns: &[u64],
access_type: &MemoryAccessType,
) -> Result<u64, ()> {
let pagesize = 4096;
let ptesize = match self.addressing_mode {
AddressingMode::SV32 => 4,
_ => 8,
};
let pte_address = parent_ppn * pagesize + vpns[level as usize] * ptesize;
let pte = match self.addressing_mode {
AddressingMode::SV32 => self.load_word_raw(pte_address) as u64,
_ => self.load_doubleword_raw(pte_address),
};
let ppn = match self.addressing_mode {
AddressingMode::SV32 => (pte >> 10) & 0x3fffff,
_ => (pte >> 10) & 0xfffffffffff,
};
let ppns = match self.addressing_mode {
AddressingMode::SV32 => [(pte >> 10) & 0x3ff, (pte >> 20) & 0xfff, 0 /*dummy*/],
AddressingMode::SV39 => [
(pte >> 10) & 0x1ff,
(pte >> 19) & 0x1ff,
(pte >> 28) & 0x3ffffff,
],
_ => panic!(), // Shouldn't happen
};
let _rsw = (pte >> 8) & 0x3;
let d = (pte >> 7) & 1;
let a = (pte >> 6) & 1;
let _g = (pte >> 5) & 1;
let _u = (pte >> 4) & 1;
let x = (pte >> 3) & 1;
let w = (pte >> 2) & 1;
let r = (pte >> 1) & 1;
let v = pte & 1;
// println!("VA:{:X} Level:{:X} PTE_AD:{:X} PTE:{:X} PPPN:{:X} PPN:{:X} PPN1:{:X} PPN0:{:X}", v_address, level, pte_address, pte, parent_ppn, ppn, ppns[1], ppns[0]);
if v == 0 || (r == 0 && w == 1) {
return Err(());
}
if r == 0 && x == 0 {
return match level {
0 => Err(()),
_ => self.traverse_page(v_address, level - 1, ppn, vpns, access_type),
};
}
// Leaf page found
if a == 0
|| (match access_type {
MemoryAccessType::Write => d == 0,
_ => false,
})
{
let new_pte = pte
| (1 << 6)
| (match access_type {
MemoryAccessType::Write => 1 << 7,
_ => 0,
});
match self.addressing_mode {
AddressingMode::SV32 => self.store_word_raw(pte_address, new_pte as u32),
_ => self.store_doubleword_raw(pte_address, new_pte),
};
}
match access_type {
MemoryAccessType::Execute => {
if x == 0 {
return Err(());
}
}
MemoryAccessType::Read => {
if r == 0 {
return Err(());
}
}
MemoryAccessType::Write => {
if w == 0 {
return Err(());
}
}
_ => {}
};
let offset = v_address & 0xfff; // [11:0]
// @TODO: Optimize
let p_address = match self.addressing_mode {
AddressingMode::SV32 => match level {
1 => {
if ppns[0] != 0 {
return Err(());
}
(ppns[1] << 22) | (vpns[0] << 12) | offset
}
0 => (ppn << 12) | offset,
_ => panic!(), // Shouldn't happen
},
_ => match level {
2 => {
if ppns[1] != 0 || ppns[0] != 0 {
return Err(());
}
(ppns[2] << 30) | (vpns[1] << 21) | (vpns[0] << 12) | offset
}
1 => {
if ppns[0] != 0 {
return Err(());
}
(ppns[2] << 30) | (ppns[1] << 21) | (vpns[0] << 12) | offset
}
0 => (ppn << 12) | offset,
_ => panic!(), // Shouldn't happen
},
};
// println!("PA:{:X}", p_address);
Ok(p_address)
}
}
/// [`Memory`](../memory/struct.Memory.html) wrapper. Converts physical address to the one in memory
/// using [`DRAM_BASE`](constant.DRAM_BASE.html) and accesses [`Memory`](../memory/struct.Memory.html).
pub struct MemoryWrapper {
memory: Memory,
}
impl MemoryWrapper {
fn new() -> Self {
MemoryWrapper {
memory: Memory::new(),
}
}
fn init(&mut self, capacity: u64) {
self.memory.init(capacity);
}
pub fn read_byte(&mut self, p_address: u64) -> u8 {
debug_assert!(
p_address >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.read_byte(p_address - DRAM_BASE)
}
pub fn read_halfword(&mut self, p_address: u64) -> u16 {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(1) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.read_halfword(p_address - DRAM_BASE)
}
pub fn read_word(&mut self, p_address: u64) -> u32 {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(3) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.read_word(p_address - DRAM_BASE)
}
pub fn read_doubleword(&mut self, p_address: u64) -> u64 {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(7) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.read_doubleword(p_address - DRAM_BASE)
}
pub fn write_byte(&mut self, p_address: u64, value: u8) {
debug_assert!(
p_address >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.write_byte(p_address - DRAM_BASE, value)
}
pub fn write_halfword(&mut self, p_address: u64, value: u16) {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(1) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.write_halfword(p_address - DRAM_BASE, value)
}
pub fn write_word(&mut self, p_address: u64, value: u32) {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(3) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.write_word(p_address - DRAM_BASE, value)
}
pub fn write_doubleword(&mut self, p_address: u64, value: u64) {
debug_assert!(
p_address >= DRAM_BASE && p_address.wrapping_add(7) >= DRAM_BASE,
"Memory address must equals to or bigger than DRAM_BASE. {:X}",
p_address
);
self.memory.write_doubleword(p_address - DRAM_BASE, value)
}
pub fn validate_address(&self, address: u64) -> bool {
self.memory.validate_address(address - DRAM_BASE)
}
}

View File

@ -0,0 +1,3 @@
mod cpu;
mod memory;
mod mmu;