fomu-flash/bbflash.c

753 lines
15 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include "rpi.h"
#define S_MOSI 10
#define S_MISO 9
#define S_CLK 11
#define S_CE0 8
#define S_HOLD 25
#define S_WP 24
#define S_D0 S_MOSI
#define S_D1 S_MISO
#define S_D2 S_WP
#define S_D3 S_HOLD
#define F_RESET 27
#define F_DONE 17
enum spi_state {
SS_UNCONFIGURED = 0,
SS_SINGLE,
SS_DUAL_RX,
SS_DUAL_TX,
SS_QUAD_RX,
SS_QUAD_TX,
SS_HARDWARE,
};
enum spi_type {
ST_UNCONFIGURED,
ST_SINGLE,
ST_DUAL,
ST_QUAD,
ST_QPI,
};
struct bb_spi {
enum spi_state state;
enum spi_type type;
int qpi;
struct {
int clk;
int d0;
int d1;
int d2;
int d3;
int wp;
int hold;
int cs;
int miso;
int mosi;
} pins;
};
static void spi_set_state(struct bb_spi *spi, enum spi_state state) {
if (spi->state == state)
return;
switch (state) {
case SS_SINGLE:
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
gpioSetMode(spi->pins.hold, PI_OUTPUT);
gpioSetMode(spi->pins.wp, PI_OUTPUT);
break;
case SS_DUAL_RX:
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
gpioSetMode(spi->pins.hold, PI_OUTPUT);
gpioSetMode(spi->pins.wp, PI_OUTPUT);
break;
case SS_DUAL_TX:
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
gpioSetMode(spi->pins.hold, PI_OUTPUT);
gpioSetMode(spi->pins.wp, PI_OUTPUT);
break;
case SS_QUAD_RX:
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
gpioSetMode(spi->pins.hold, PI_INPUT);
gpioSetMode(spi->pins.wp, PI_INPUT);
break;
case SS_QUAD_TX:
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
gpioSetMode(spi->pins.hold, PI_OUTPUT);
gpioSetMode(spi->pins.wp, PI_OUTPUT);
break;
case SS_HARDWARE:
gpioSetMode(spi->pins.clk, PI_ALT0); // CLK
gpioSetMode(spi->pins.cs, PI_ALT0); // CE0#
gpioSetMode(spi->pins.mosi, PI_ALT0); // MOSI
gpioSetMode(spi->pins.miso, PI_ALT0); // MISO
gpioSetMode(spi->pins.hold, PI_OUTPUT);
gpioSetMode(spi->pins.wp, PI_OUTPUT);
break;
default:
fprintf(stderr, "Unrecognized spi state\n");
return;
}
spi->state = state;
}
static void spi_pause(void) {
// usleep(1);
return;
}
static void spiBegin(struct bb_spi *spi) {
spi_set_state(spi, SS_SINGLE);
gpioWrite(spi->pins.cs, 0);
}
static void spiEnd(struct bb_spi *spi) {
(void)spi;
gpioWrite(spi->pins.cs, 1);
}
static uint8_t spiXfer(struct bb_spi *spi, uint8_t out) {
int bit;
uint8_t in = 0;
for (bit = 7; bit >= 0; bit--) {
if (out & (1 << bit)) {
gpioWrite(spi->pins.mosi, 1);
}
else {
gpioWrite(spi->pins.mosi, 0);
}
gpioWrite(spi->pins.clk, 1);
spi_pause();
in |= ((!!gpioRead(spi->pins.miso)) << bit);
gpioWrite(spi->pins.clk, 0);
spi_pause();
}
return in;
}
static void spiSingleTx(struct bb_spi *spi, uint8_t out) {
spi_set_state(spi, SS_SINGLE);
spiXfer(spi, out);
}
static uint8_t spiSingleRx(struct bb_spi *spi) {
spi_set_state(spi, SS_SINGLE);
return spiXfer(spi, 0xff);
}
static void spiDualTx(struct bb_spi *spi, uint8_t out) {
int bit;
spi_set_state(spi, SS_DUAL_TX);
for (bit = 7; bit >= 0; bit -= 2) {
if (out & (1 << (bit - 1))) {
gpioWrite(spi->pins.d0, 1);
}
else {
gpioWrite(spi->pins.d0, 0);
}
if (out & (1 << (bit - 0))) {
gpioWrite(spi->pins.d1, 1);
}
else {
gpioWrite(spi->pins.d1, 0);
}
gpioWrite(spi->pins.clk, 1);
spi_pause();
gpioWrite(spi->pins.clk, 0);
spi_pause();
}
}
static void spiQuadTx(struct bb_spi *spi, uint8_t out) {
int bit;
spi_set_state(spi, SS_QUAD_TX);
for (bit = 7; bit >= 0; bit -= 4) {
if (out & (1 << (bit - 3))) {
gpioWrite(spi->pins.d0, 1);
}
else {
gpioWrite(spi->pins.d0, 0);
}
if (out & (1 << (bit - 2))) {
gpioWrite(spi->pins.d1, 1);
}
else {
gpioWrite(spi->pins.d1, 0);
}
if (out & (1 << (bit - 1))) {
gpioWrite(spi->pins.d2, 1);
}
else {
gpioWrite(spi->pins.d2, 0);
}
if (out & (1 << (bit - 0))) {
gpioWrite(spi->pins.d3, 1);
}
else {
gpioWrite(spi->pins.d3, 0);
}
gpioWrite(spi->pins.clk, 1);
spi_pause();
gpioWrite(spi->pins.clk, 0);
spi_pause();
}
}
void spiCommand(struct bb_spi *spi, uint8_t cmd) {
if (spi->qpi)
spiQuadTx(spi, cmd);
else
spiSingleTx(spi, cmd);
}
static uint8_t spiDualRx(struct bb_spi *spi) {
int bit;
uint8_t in = 0;
spi_set_state(spi, SS_QUAD_RX);
for (bit = 7; bit >= 0; bit -= 2) {
gpioWrite(spi->pins.clk, 1);
spi_pause();
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 1));
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 0));
gpioWrite(spi->pins.clk, 0);
spi_pause();
}
return in;
}
static uint8_t spiQuadRx(struct bb_spi *spi) {
int bit;
uint8_t in = 0;
spi_set_state(spi, SS_QUAD_RX);
for (bit = 7; bit >= 0; bit -= 4) {
gpioWrite(spi->pins.clk, 1);
spi_pause();
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 3));
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 2));
in |= ((!!gpioRead(spi->pins.d2)) << (bit - 1));
in |= ((!!gpioRead(spi->pins.d3)) << (bit - 0));
gpioWrite(spi->pins.clk, 0);
spi_pause();
}
return in;
}
int spiTx(struct bb_spi *spi, uint8_t word) {
switch (spi->type) {
case ST_SINGLE:
spiSingleTx(spi, word);
break;
case ST_DUAL:
spiDualTx(spi, word);
break;
case ST_QUAD:
case ST_QPI:
spiQuadTx(spi, word);
break;
default:
return -1;
}
return 0;
}
uint8_t spiRx(struct bb_spi *spi) {
switch (spi->type) {
case ST_SINGLE:
return spiSingleRx(spi);
case ST_DUAL:
return spiDualRx(spi);
case ST_QUAD:
case ST_QPI:
return spiQuadRx(spi);
default:
return 0xff;
}
}
uint8_t spiReadSr(struct bb_spi *spi, int sr) {
uint8_t val = 0xff;
switch (sr) {
case 1:
spiBegin(spi);
spiCommand(spi, 0x05);
val = spiRx(spi);
spiEnd(spi);
break;
case 2:
spiBegin(spi);
spiCommand(spi, 0x35);
val = spiRx(spi);
spiEnd(spi);
break;
case 3:
spiBegin(spi);
spiCommand(spi, 0x15);
val = spiRx(spi);
spiEnd(spi);
break;
default:
fprintf(stderr, "unrecognized status register: %d\n", sr);
break;
}
return val;
}
void spiWriteSr(struct bb_spi *spi, int sr, uint8_t val) {
switch (sr) {
case 1:
spiBegin(spi);
spiCommand(spi, 0x50);
spiEnd(spi);
spiBegin(spi);
spiCommand(spi, 0x01);
spiCommand(spi, val);
spiEnd(spi);
break;
case 2:
spiBegin(spi);
spiCommand(spi, 0x50);
spiEnd(spi);
spiBegin(spi);
spiCommand(spi, 0x31);
spiCommand(spi, val);
spiEnd(spi);
break;
case 3:
spiBegin(spi);
spiCommand(spi, 0x50);
spiEnd(spi);
spiBegin(spi);
spiCommand(spi, 0x11);
spiCommand(spi, val);
spiEnd(spi);
break;
default:
fprintf(stderr, "unrecognized status register: %d\n", sr);
break;
}
}
int spiSetType(struct bb_spi *spi, enum spi_type type) {
if (spi->type == type)
return 0;
switch (type) {
case ST_SINGLE:
if (spi->type == ST_QPI) {
spiBegin(spi);
spiCommand(spi, 0xff); // Exit QPI Mode
spiEnd(spi);
spi->qpi = 0;
}
spi->type = type;
spi_set_state(spi, SS_SINGLE);
break;
case ST_DUAL:
if (spi->type == ST_QPI) {
spiBegin(spi);
spiCommand(spi, 0xff); // Exit QPI Mode
spiEnd(spi);
spi->qpi = 0;
}
spi->type = type;
spi_set_state(spi, SS_DUAL_TX);
break;
case ST_QUAD:
if (spi->type == ST_QPI) {
spiBegin(spi);
spiCommand(spi, 0xff); // Exit QPI Mode
spiEnd(spi);
spi->qpi = 0;
}
// Enable QE bit
spiWriteSr(spi, 2, spiReadSr(spi, 2) | (1 << 1));
spi->type = type;
spi_set_state(spi, SS_QUAD_TX);
break;
case ST_QPI:
// Enable QE bit
spiWriteSr(spi, 2, spiReadSr(spi, 2) | (1 << 1));
spiBegin(spi);
spiCommand(spi, 0x38); // Enter QPI Mode
spiEnd(spi);
spi->qpi = 1;
spi->type = type;
spi_set_state(spi, SS_QUAD_TX);
break;
default:
fprintf(stderr, "Unrecognized SPI type: %d\n", type);
return 1;
}
return 0;
}
int spiRead(struct bb_spi *spi, uint32_t addr, uint8_t *data, unsigned int count) {
unsigned int i;
spiBegin(spi);
switch (spi->type) {
case ST_SINGLE:
case ST_QPI:
spiCommand(spi, 0x0b);
break;
case ST_DUAL:
spiCommand(spi, 0x3b);
break;
case ST_QUAD:
spiCommand(spi, 0x6b);
break;
default:
fprintf(stderr, "unrecognized spi mode\n");
spiEnd(spi);
return 1;
}
spiCommand(spi, addr >> 16);
spiCommand(spi, addr >> 8);
spiCommand(spi, addr >> 0);
spiCommand(spi, 0x00);
for (i = 0; i < count; i++)
data[i] = spiRx(spi);
spiEnd(spi);
return 0;
}
int spi_wait_for_not_busy(struct bb_spi *spi) {
uint8_t sr1;
sr1 = spiReadSr(spi, 1);
do {
sr1 = spiReadSr(spi, 1);
} while (sr1 & (1 << 0));
return 0;
}
int spiWrite(struct bb_spi *spi, uint32_t addr, const uint8_t *data, unsigned int count) {
unsigned int i;
if (addr & 0xff) {
fprintf(stderr, "Error: Target address is not page-aligned to 256 bytes\n");
return 1;
}
// Erase all applicable blocks
uint32_t erase_addr;
for (erase_addr = 0; erase_addr < count; erase_addr += 32768) {
spiBegin(spi);
spiCommand(spi, 0x06);
spiEnd(spi);
spiBegin(spi);
spiCommand(spi, 0x52);
spiCommand(spi, erase_addr >> 16);
spiCommand(spi, erase_addr >> 8);
spiCommand(spi, erase_addr >> 0);
spiEnd(spi);
spi_wait_for_not_busy(spi);
}
uint8_t write_cmd;
switch (spi->type) {
case ST_DUAL:
fprintf(stderr, "dual writes are broken -- need to temporarily set SINGLE mode\n");
return 1;
case ST_SINGLE:
case ST_QPI:
write_cmd = 0x02;
break;
case ST_QUAD:
write_cmd = 0x32;
break;
default:
fprintf(stderr, "unrecognized spi mode\n");
return 1;
}
while (count) {
spiBegin(spi);
spiCommand(spi, 0x06);
spiEnd(spi);
spiBegin(spi);
spiCommand(spi, write_cmd);
spiCommand(spi, addr >> 16);
spiCommand(spi, addr >> 8);
spiCommand(spi, addr >> 0);
for (i = 0; (i < count) && (i < 256); i++)
spiTx(spi, *data++);
spiEnd(spi);
count -= i;
addr += i;
spi_wait_for_not_busy(spi);
}
return 0;
}
uint8_t spiReset(struct bb_spi *spi) {
// XXX You should check the "Ready" bit before doing this!
spiSetType(spi, ST_SINGLE);
spiBegin(spi);
spiSingleTx(spi, 0x66); // "Enable Reset" command
spiEnd(spi);
spiBegin(spi);
spiSingleTx(spi, 0x99); // "Reset Device" command
spiEnd(spi);
usleep(30);
return 0;
}
void fpgaSlaveMode(struct bb_spi *spi) {
// Set the CS pin to a GPIO, which will let us control it
gpioSetMode(spi->pins.cs, PI_OUTPUT);
// Set CS to 0, which will put the FPGA into slave mode
gpioWrite(spi->pins.cs, 0);
usleep(10000); // XXX figure out correct sleep length here
// Bring the FPGA out of reset
gpioWrite(F_RESET, 1);
usleep(1200); // 13.2.SPI Slave Configuration Process
}
int spiInit(struct bb_spi *spi) {
spi->state = SS_UNCONFIGURED;
spi->type = ST_UNCONFIGURED;
spi->qpi = 0;
// Reset the SPI flash, which will return it to SPI mode even
// if it's in QPI mode.
spiReset(spi);
spiSetType(spi, ST_SINGLE);
return 0;
}
static inline int isprint(int c)
{
return c > 32 && c < 127;
}
int print_hex_offset(FILE *stream,
const void *block, int count, int offset, uint32_t start)
{
int byte;
const uint8_t *b = block;
count += offset;
b -= offset;
for ( ; offset < count; offset += 16) {
fprintf(stream, "%08x", start + offset);
for (byte = 0; byte < 16; byte++) {
if (byte == 8)
fprintf(stream, " ");
fprintf(stream, " ");
if (offset + byte < count)
fprintf(stream, "%02x", b[offset + byte] & 0xff);
else
fprintf(stream, " ");
}
fprintf(stream, " |");
for (byte = 0; byte < 16 && byte + offset < count; byte++)
fprintf(stream, "%c", isprint(b[offset + byte]) ? b[offset + byte] : '.');
fprintf(stream, "|\r\n");
}
return 0;
}
int print_hex(const void *block, int count, uint32_t start)
{
FILE *stream = stdout;
return print_hex_offset(stream, block, count, 0, start);
}
int main(int argc, char *argv[])
{
int result;
struct bb_spi spi;
if (gpioInitialise() < 0) {
fprintf(stderr, "Unable to initialize GPIO\n");
return 1;
}
/* The dance to put the FPGA into programming mode:
* 1) Put it into reset (set C_RESET to 0)
* 2) Drive CS to 0
* 3) Bring it out of reset
* 4) Let CS go back to 1
* 5) Set HOLD/ on the SPI flash by setting pin 25 to 0
* To program the FPGA
*/
spi.pins.clk = S_CLK;
spi.pins.d0 = S_D0;
spi.pins.d1 = S_D1;
spi.pins.d2 = S_D2;
spi.pins.d3 = S_D3;
spi.pins.miso = S_MISO;
spi.pins.mosi = S_MOSI;
spi.pins.hold = S_HOLD;
spi.pins.wp = S_WP;
spi.pins.cs = S_CE0;
// Have the SPI flash pay attention to us
gpioWrite(spi.pins.hold, 1);
// Disable WP
gpioWrite(spi.pins.wp, 1);
// Put the FPGA into reset
gpioSetMode(F_RESET, PI_OUTPUT);
gpioWrite(F_RESET, 0);
// Also monitor the C_DONE pin
gpioSetMode(F_DONE, PI_INPUT);
// Restart the FPGA in slave mode
//fpgaSlaveMode();
result = gpioRead(F_DONE);
fprintf(stderr, "Reset before running: %d\n", result);
spiInit(&spi);
spiSetType(&spi, ST_QPI);
// Assert CS
spiBegin(&spi);
int i;
fprintf(stderr, "Write:");
spiCommand(&spi, 0x90);
spiTx(&spi, 0x00); // A23-16
spiTx(&spi, 0x00); // A15-8
spiRx(&spi); // Dummy0
spiRx(&spi); // Dummy1
fprintf(stderr, "\nRead:");
for (i=0; i<16; i++) {
fprintf(stderr, " 0x%02x", spiRx(&spi));
}
fprintf(stderr, "\n");
spiEnd(&spi);
uint8_t data[383316];
{
memset(data, 0xaa, sizeof(data));
int fd = open("/tmp/image-gateware+bios+micropython.bin", O_RDONLY);
if (read(fd, data, sizeof(data)) != sizeof(data)) {
perror("uanble to read");
return 1;
}
spiWrite(&spi, 0, data, sizeof(data));
}
{
uint8_t page0[256];
spiRead(&spi, 0, page0, sizeof(page0));
print_hex(page0, sizeof(page0), 0);
}
{
uint8_t check_data[sizeof(data)];
spiRead(&spi, 0, check_data, sizeof(check_data));
size_t j;
for (j=0; j<sizeof(check_data); j++) {
if (data[j] != check_data[j]) {
fprintf(stderr, "check data %d different: %02x vs %02x\n", j, check_data[j], data[j]);
}
}
}
result = gpioRead(F_DONE);
fprintf(stderr, "Programming result: %d\n", result);
// Deassert CS
gpioWrite(spi.pins.cs, 1);
// Deassert hold, if set
gpioWrite(spi.pins.hold, 1);
// Return the SPI pins to SPI mode, so we can talk to
// the FPGA normally
spiSetType(&spi, ST_SINGLE);
spiInit(&spi);
spi_set_state(&spi, SS_HARDWARE);
return 0;
}