841 lines
17 KiB
C
841 lines
17 KiB
C
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "rpi.h"
|
|
#include "spi.h"
|
|
|
|
enum ff_spi_quirks {
|
|
// There is no separate "Write SR 2" command. Instead,
|
|
// you must write SR2 after writing SR1
|
|
SQ_SR2_FROM_SR1 = (1 << 0),
|
|
|
|
// Don't issue a "Write Enable" command prior to writing
|
|
// a status register
|
|
SQ_SKIP_SR_WEL = (1 << 1),
|
|
|
|
// Security registers are shifted up by 4 bits
|
|
SQ_SECURITY_NYBBLE_SHIFT = (1 << 2),
|
|
};
|
|
|
|
struct ff_spi {
|
|
enum spi_state state;
|
|
enum spi_type type;
|
|
enum spi_type desired_type;
|
|
struct spi_id id;
|
|
enum ff_spi_quirks quirks;
|
|
int size_override;
|
|
|
|
struct {
|
|
int clk;
|
|
int d0;
|
|
int d1;
|
|
int d2;
|
|
int d3;
|
|
int wp;
|
|
int hold;
|
|
int cs;
|
|
int miso;
|
|
int mosi;
|
|
} pins;
|
|
};
|
|
|
|
static void spi_get_id(struct ff_spi *spi);
|
|
|
|
static void spi_set_state(struct ff_spi *spi, enum spi_state state) {
|
|
if (spi->state == state)
|
|
return;
|
|
|
|
switch (state) {
|
|
case SS_SINGLE:
|
|
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
|
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
|
break;
|
|
|
|
case SS_DUAL_RX:
|
|
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
|
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
|
break;
|
|
|
|
case SS_DUAL_TX:
|
|
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
|
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
|
break;
|
|
|
|
case SS_QUAD_RX:
|
|
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_INPUT); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_INPUT); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_INPUT);
|
|
gpioSetMode(spi->pins.wp, PI_INPUT);
|
|
break;
|
|
|
|
case SS_QUAD_TX:
|
|
gpioSetMode(spi->pins.clk, PI_OUTPUT); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_OUTPUT); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_OUTPUT); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_OUTPUT); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
|
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
|
break;
|
|
|
|
case SS_HARDWARE:
|
|
gpioSetMode(spi->pins.clk, PI_ALT0); // CLK
|
|
gpioSetMode(spi->pins.cs, PI_ALT0); // CE0#
|
|
gpioSetMode(spi->pins.mosi, PI_ALT0); // MOSI
|
|
gpioSetMode(spi->pins.miso, PI_ALT0); // MISO
|
|
gpioSetMode(spi->pins.hold, PI_OUTPUT);
|
|
gpioSetMode(spi->pins.wp, PI_OUTPUT);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "Unrecognized spi state\n");
|
|
return;
|
|
}
|
|
|
|
spi->state = state;
|
|
}
|
|
|
|
void spiPause(struct ff_spi *spi) {
|
|
(void)spi;
|
|
// usleep(1);
|
|
return;
|
|
}
|
|
|
|
void spiBegin(struct ff_spi *spi) {
|
|
spi_set_state(spi, SS_SINGLE);
|
|
if ((spi->type == ST_SINGLE) || (spi->type == ST_DUAL)) {
|
|
gpioWrite(spi->pins.wp, 1);
|
|
gpioWrite(spi->pins.hold, 1);
|
|
}
|
|
gpioWrite(spi->pins.cs, 0);
|
|
}
|
|
|
|
void spiEnd(struct ff_spi *spi) {
|
|
(void)spi;
|
|
gpioWrite(spi->pins.cs, 1);
|
|
}
|
|
|
|
static uint8_t spiXfer(struct ff_spi *spi, uint8_t out) {
|
|
int bit;
|
|
uint8_t in = 0;
|
|
for (bit = 7; bit >= 0; bit--) {
|
|
if (out & (1 << bit)) {
|
|
gpioWrite(spi->pins.mosi, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.mosi, 0);
|
|
}
|
|
gpioWrite(spi->pins.clk, 1);
|
|
spiPause(spi);
|
|
in |= ((!!gpioRead(spi->pins.miso)) << bit);
|
|
gpioWrite(spi->pins.clk, 0);
|
|
spiPause(spi);
|
|
}
|
|
return in;
|
|
}
|
|
|
|
static void spiSingleTx(struct ff_spi *spi, uint8_t out) {
|
|
spi_set_state(spi, SS_SINGLE);
|
|
spiXfer(spi, out);
|
|
}
|
|
|
|
static uint8_t spiSingleRx(struct ff_spi *spi) {
|
|
spi_set_state(spi, SS_SINGLE);
|
|
return spiXfer(spi, 0xff);
|
|
}
|
|
|
|
static void spiDualTx(struct ff_spi *spi, uint8_t out) {
|
|
int bit;
|
|
spi_set_state(spi, SS_DUAL_TX);
|
|
for (bit = 7; bit >= 0; bit -= 2) {
|
|
if (out & (1 << (bit - 1))) {
|
|
gpioWrite(spi->pins.d0, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d0, 0);
|
|
}
|
|
|
|
if (out & (1 << (bit - 0))) {
|
|
gpioWrite(spi->pins.d1, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d1, 0);
|
|
}
|
|
gpioWrite(spi->pins.clk, 1);
|
|
spiPause(spi);
|
|
gpioWrite(spi->pins.clk, 0);
|
|
spiPause(spi);
|
|
}
|
|
}
|
|
|
|
static void spiQuadTx(struct ff_spi *spi, uint8_t out) {
|
|
int bit;
|
|
spi_set_state(spi, SS_QUAD_TX);
|
|
for (bit = 7; bit >= 0; bit -= 4) {
|
|
if (out & (1 << (bit - 3))) {
|
|
gpioWrite(spi->pins.d0, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d0, 0);
|
|
}
|
|
|
|
if (out & (1 << (bit - 2))) {
|
|
gpioWrite(spi->pins.d1, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d1, 0);
|
|
}
|
|
|
|
if (out & (1 << (bit - 1))) {
|
|
gpioWrite(spi->pins.d2, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d2, 0);
|
|
}
|
|
|
|
if (out & (1 << (bit - 0))) {
|
|
gpioWrite(spi->pins.d3, 1);
|
|
}
|
|
else {
|
|
gpioWrite(spi->pins.d3, 0);
|
|
}
|
|
gpioWrite(spi->pins.clk, 1);
|
|
spiPause(spi);
|
|
gpioWrite(spi->pins.clk, 0);
|
|
spiPause(spi);
|
|
}
|
|
}
|
|
|
|
static uint8_t spiDualRx(struct ff_spi *spi) {
|
|
int bit;
|
|
uint8_t in = 0;
|
|
|
|
spi_set_state(spi, SS_QUAD_RX);
|
|
for (bit = 7; bit >= 0; bit -= 2) {
|
|
gpioWrite(spi->pins.clk, 1);
|
|
spiPause(spi);
|
|
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 1));
|
|
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 0));
|
|
gpioWrite(spi->pins.clk, 0);
|
|
spiPause(spi);
|
|
}
|
|
return in;
|
|
}
|
|
|
|
static uint8_t spiQuadRx(struct ff_spi *spi) {
|
|
int bit;
|
|
uint8_t in = 0;
|
|
|
|
spi_set_state(spi, SS_QUAD_RX);
|
|
for (bit = 7; bit >= 0; bit -= 4) {
|
|
gpioWrite(spi->pins.clk, 1);
|
|
spiPause(spi);
|
|
in |= ((!!gpioRead(spi->pins.d0)) << (bit - 3));
|
|
in |= ((!!gpioRead(spi->pins.d1)) << (bit - 2));
|
|
in |= ((!!gpioRead(spi->pins.d2)) << (bit - 1));
|
|
in |= ((!!gpioRead(spi->pins.d3)) << (bit - 0));
|
|
gpioWrite(spi->pins.clk, 0);
|
|
spiPause(spi);
|
|
}
|
|
return in;
|
|
}
|
|
|
|
int spiTx(struct ff_spi *spi, uint8_t word) {
|
|
switch (spi->type) {
|
|
case ST_SINGLE:
|
|
spiSingleTx(spi, word);
|
|
break;
|
|
case ST_DUAL:
|
|
spiDualTx(spi, word);
|
|
break;
|
|
case ST_QUAD:
|
|
case ST_QPI:
|
|
spiQuadTx(spi, word);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint8_t spiRx(struct ff_spi *spi) {
|
|
switch (spi->type) {
|
|
case ST_SINGLE:
|
|
return spiSingleRx(spi);
|
|
case ST_DUAL:
|
|
return spiDualRx(spi);
|
|
case ST_QUAD:
|
|
case ST_QPI:
|
|
return spiQuadRx(spi);
|
|
default:
|
|
return 0xff;
|
|
}
|
|
}
|
|
|
|
void spiCommand(struct ff_spi *spi, uint8_t cmd) {
|
|
if (spi->type == ST_QPI)
|
|
spiQuadTx(spi, cmd);
|
|
else
|
|
spiSingleTx(spi, cmd);
|
|
}
|
|
|
|
uint8_t spiCommandRx(struct ff_spi *spi) {
|
|
if (spi->type == ST_QPI)
|
|
return spiQuadRx(spi);
|
|
else
|
|
return spiSingleRx(spi);
|
|
}
|
|
|
|
uint8_t spiReadStatus(struct ff_spi *spi, uint8_t sr) {
|
|
uint8_t val = 0xff;
|
|
|
|
switch (sr) {
|
|
case 1:
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x05);
|
|
val = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
break;
|
|
|
|
case 2:
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x35);
|
|
val = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
break;
|
|
|
|
case 3:
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x15);
|
|
val = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "unrecognized status register: %d\n", sr);
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
void spiWriteSecurity(struct ff_spi *spi, uint8_t sr, uint8_t security[256]) {
|
|
|
|
if (spi->quirks & SQ_SECURITY_NYBBLE_SHIFT)
|
|
sr <<= 4;
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
|
|
// erase the register
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x44);
|
|
spiCommand(spi, 0x00); // A23-16
|
|
spiCommand(spi, sr); // A15-8
|
|
spiCommand(spi, 0x00); // A0-7
|
|
spiEnd(spi);
|
|
|
|
spi_get_id(spi);
|
|
sleep(1);
|
|
|
|
// write enable
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x42);
|
|
spiCommand(spi, 0x00); // A23-16
|
|
spiCommand(spi, sr); // A15-8
|
|
spiCommand(spi, 0x00); // A0-7
|
|
int i;
|
|
for (i = 0; i < 256; i++)
|
|
spiCommand(spi, security[i]);
|
|
spiEnd(spi);
|
|
|
|
spi_get_id(spi);
|
|
}
|
|
|
|
void spiReadSecurity(struct ff_spi *spi, uint8_t sr, uint8_t security[256]) {
|
|
if (spi->quirks & SQ_SECURITY_NYBBLE_SHIFT)
|
|
sr <<= 4;
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x48); // Read security registers
|
|
spiCommand(spi, 0x00); // A23-16
|
|
spiCommand(spi, sr); // A15-8
|
|
spiCommand(spi, 0x00); // A0-7
|
|
int i;
|
|
for (i = 0; i < 256; i++)
|
|
security[i] = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
}
|
|
|
|
void spiWriteStatus(struct ff_spi *spi, uint8_t sr, uint8_t val) {
|
|
|
|
switch (sr) {
|
|
case 1:
|
|
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
}
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x50);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x01);
|
|
spiCommand(spi, val);
|
|
spiEnd(spi);
|
|
break;
|
|
|
|
case 2: {
|
|
uint8_t sr1 = 0x00;
|
|
if (spi->quirks & SQ_SR2_FROM_SR1)
|
|
sr1 = spiReadStatus(spi, 1);
|
|
|
|
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
}
|
|
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x50);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
if (spi->quirks & SQ_SR2_FROM_SR1) {
|
|
spiCommand(spi, 0x01);
|
|
spiCommand(spi, sr1);
|
|
spiCommand(spi, val);
|
|
}
|
|
else {
|
|
spiCommand(spi, 0x31);
|
|
spiCommand(spi, val);
|
|
}
|
|
spiEnd(spi);
|
|
break;
|
|
}
|
|
|
|
case 3:
|
|
if (!(spi->quirks & SQ_SKIP_SR_WEL)) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
}
|
|
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x50);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x11);
|
|
spiCommand(spi, val);
|
|
spiEnd(spi);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "unrecognized status register: %d\n", sr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct spi_id spiId(struct ff_spi *spi) {
|
|
return spi->id;
|
|
}
|
|
|
|
static void spi_decode_id(struct ff_spi *spi) {
|
|
|
|
spi->id.manufacturer = "unknown";
|
|
spi->id.model = "unknown";
|
|
spi->id.capacity = "unknown";
|
|
spi->id.bytes = -1; // unknown
|
|
|
|
if (spi->id.manufacturer_id == 0xef) {
|
|
spi->id.manufacturer = "Winbond";
|
|
if ((spi->id.memory_type == 0x70)
|
|
&& (spi->id.memory_size == 0x18)) {
|
|
spi->id.model = "W25Q128JV";
|
|
spi->id.capacity = "128 Mbit";
|
|
spi->id.bytes = 16 * 1024 * 1024;
|
|
}
|
|
}
|
|
|
|
if (spi->id.manufacturer_id == 0x1f) {
|
|
spi->id.manufacturer = "Adesto";
|
|
if ((spi->id.memory_type == 0x86)
|
|
&& (spi->id.memory_size == 0x01)) {
|
|
spi->id.model = "AT25SF161";
|
|
spi->id.capacity = "16 Mbit";
|
|
spi->id.bytes = 1 * 1024 * 1024;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void spi_get_id(struct ff_spi *spi) {
|
|
memset(&spi->id, 0xff, sizeof(spi->id));
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x90); // Read manufacturer ID
|
|
spiCommand(spi, 0x00); // Dummy byte 1
|
|
spiCommand(spi, 0x00); // Dummy byte 2
|
|
spiCommand(spi, 0x00); // Dummy byte 3
|
|
spi->id.manufacturer_id = spiCommandRx(spi);
|
|
spi->id.device_id = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x9f); // Read device id
|
|
spi->id._manufacturer_id = spiCommandRx(spi);
|
|
spi->id.memory_type = spiCommandRx(spi);
|
|
spi->id.memory_size = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xab); // Read electronic signature
|
|
spiCommand(spi, 0x00); // Dummy byte 1
|
|
spiCommand(spi, 0x00); // Dummy byte 2
|
|
spiCommand(spi, 0x00); // Dummy byte 3
|
|
spi->id.signature = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x4b); // Read unique ID
|
|
spiCommand(spi, 0x00); // Dummy byte 1
|
|
spiCommand(spi, 0x00); // Dummy byte 2
|
|
spiCommand(spi, 0x00); // Dummy byte 3
|
|
spiCommand(spi, 0x00); // Dummy byte 4
|
|
spi->id.serial[0] = spiCommandRx(spi);
|
|
spi->id.serial[1] = spiCommandRx(spi);
|
|
spi->id.serial[2] = spiCommandRx(spi);
|
|
spi->id.serial[3] = spiCommandRx(spi);
|
|
spiEnd(spi);
|
|
|
|
spi_decode_id(spi);
|
|
return;
|
|
}
|
|
|
|
void spiOverrideSize(struct ff_spi *spi, uint32_t size) {
|
|
spi->size_override = size;
|
|
|
|
// If size is 0, re-read the capacity
|
|
if (!size)
|
|
spi_decode_id(spi);
|
|
else
|
|
spi->id.bytes = size;
|
|
}
|
|
|
|
int spiSetType(struct ff_spi *spi, enum spi_type type) {
|
|
|
|
if (spi->type == type)
|
|
return 0;
|
|
|
|
switch (type) {
|
|
|
|
case ST_SINGLE:
|
|
if (spi->type == ST_QPI) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xff); // Exit QPI Mode
|
|
spiEnd(spi);
|
|
}
|
|
spi->type = type;
|
|
spi_set_state(spi, SS_SINGLE);
|
|
break;
|
|
|
|
case ST_DUAL:
|
|
if (spi->type == ST_QPI) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xff); // Exit QPI Mode
|
|
spiEnd(spi);
|
|
}
|
|
spi->type = type;
|
|
spi_set_state(spi, SS_DUAL_TX);
|
|
break;
|
|
|
|
case ST_QUAD:
|
|
if (spi->type == ST_QPI) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xff); // Exit QPI Mode
|
|
spiEnd(spi);
|
|
}
|
|
|
|
// Enable QE bit
|
|
spiWriteStatus(spi, 2, spiReadStatus(spi, 2) | (1 << 1));
|
|
|
|
spi->type = type;
|
|
spi_set_state(spi, SS_QUAD_TX);
|
|
break;
|
|
|
|
case ST_QPI:
|
|
// Enable QE bit
|
|
spiWriteStatus(spi, 2, spiReadStatus(spi, 2) | (1 << 1));
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x38); // Enter QPI Mode
|
|
spiEnd(spi);
|
|
spi->type = type;
|
|
spi_set_state(spi, SS_QUAD_TX);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "Unrecognized SPI type: %d\n", type);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int spiRead(struct ff_spi *spi, uint32_t addr, uint8_t *data, unsigned int count) {
|
|
|
|
unsigned int i;
|
|
|
|
spiBegin(spi);
|
|
switch (spi->type) {
|
|
case ST_SINGLE:
|
|
case ST_QPI:
|
|
spiCommand(spi, 0x0b);
|
|
break;
|
|
case ST_DUAL:
|
|
spiCommand(spi, 0x3b);
|
|
break;
|
|
case ST_QUAD:
|
|
spiCommand(spi, 0x6b);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unrecognized spi mode\n");
|
|
spiEnd(spi);
|
|
return 1;
|
|
}
|
|
spiCommand(spi, addr >> 16);
|
|
spiCommand(spi, addr >> 8);
|
|
spiCommand(spi, addr >> 0);
|
|
spiCommand(spi, 0x00);
|
|
for (i = 0; i < count; i++) {
|
|
if ((i & 0x3fff) == 0) {
|
|
printf("\rReading @ %06x / %06x", i, count);
|
|
fflush(stdout);
|
|
}
|
|
data[i] = spiRx(spi);
|
|
}
|
|
printf("\rReading @ %06x / %06x Done\n", i, count);
|
|
|
|
spiEnd(spi);
|
|
return 0;
|
|
}
|
|
|
|
static int spi_wait_for_not_busy(struct ff_spi *spi) {
|
|
uint8_t sr1;
|
|
sr1 = spiReadStatus(spi, 1);
|
|
|
|
do {
|
|
sr1 = spiReadStatus(spi, 1);
|
|
} while (sr1 & (1 << 0));
|
|
return 0;
|
|
}
|
|
|
|
void spiSwapTxRx(struct ff_spi *spi) {
|
|
int tmp = spi->pins.mosi;
|
|
spi->pins.mosi = spi->pins.miso;
|
|
spi->pins.miso = tmp;
|
|
spiSetType(spi, ST_SINGLE);
|
|
spi->state = SS_UNCONFIGURED;
|
|
spi_set_state(spi, SS_SINGLE);
|
|
}
|
|
|
|
int spiWrite(struct ff_spi *spi, uint32_t addr, const uint8_t *data, unsigned int count) {
|
|
|
|
unsigned int i;
|
|
|
|
if (addr & 0xff) {
|
|
fprintf(stderr, "Error: Target address is not page-aligned to 256 bytes\n");
|
|
return 1;
|
|
}
|
|
|
|
// Erase all applicable blocks
|
|
uint32_t erase_addr;
|
|
for (erase_addr = 0; erase_addr < count; erase_addr += 32768) {
|
|
printf("\rErasing @ %06x / %06x", erase_addr, count);
|
|
fflush(stdout);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x52);
|
|
spiCommand(spi, erase_addr >> 16);
|
|
spiCommand(spi, erase_addr >> 8);
|
|
spiCommand(spi, erase_addr >> 0);
|
|
spiEnd(spi);
|
|
|
|
spi_wait_for_not_busy(spi);
|
|
}
|
|
printf(" Done\n");
|
|
|
|
uint8_t write_cmd;
|
|
switch (spi->type) {
|
|
case ST_DUAL:
|
|
fprintf(stderr, "dual writes are broken -- need to temporarily set SINGLE mode\n");
|
|
return 1;
|
|
case ST_SINGLE:
|
|
case ST_QPI:
|
|
write_cmd = 0x02;
|
|
break;
|
|
case ST_QUAD:
|
|
write_cmd = 0x32;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unrecognized spi mode\n");
|
|
return 1;
|
|
}
|
|
|
|
int total = count;
|
|
while (count) {
|
|
printf("\rProgramming @ %06x / %06x", addr, total);
|
|
fflush(stdout);
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x06);
|
|
spiEnd(spi);
|
|
|
|
uint8_t sr1 = spiReadStatus(spi, 1);
|
|
if (!(sr1 & (1 << 1)))
|
|
fprintf(stderr, "error: write-enable latch (WEL) not set, write will probably fail\n");
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, write_cmd);
|
|
spiCommand(spi, addr >> 16);
|
|
spiCommand(spi, addr >> 8);
|
|
spiCommand(spi, addr >> 0);
|
|
for (i = 0; (i < count) && (i < 256); i++)
|
|
spiTx(spi, *data++);
|
|
spiEnd(spi);
|
|
count -= i;
|
|
addr += i;
|
|
spi_wait_for_not_busy(spi);
|
|
}
|
|
printf("\rProgramming @ %06x / %06x", addr, total);
|
|
printf(" Done\n");
|
|
return 0;
|
|
}
|
|
|
|
uint8_t spiReset(struct ff_spi *spi) {
|
|
// XXX You should check the "Ready" bit before doing this!
|
|
|
|
// Shift to QPI mode, then back to Single mode, to ensure
|
|
// we're actually in Single mode.
|
|
spiSetType(spi, ST_QPI);
|
|
spiSetType(spi, ST_SINGLE);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x66); // "Enable Reset" command
|
|
spiEnd(spi);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0x99); // "Reset Device" command
|
|
spiEnd(spi);
|
|
|
|
usleep(30);
|
|
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xab); // "Resume from Deep Power-Down" command
|
|
spiEnd(spi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spiInit(struct ff_spi *spi) {
|
|
spi->state = SS_UNCONFIGURED;
|
|
spi->type = ST_UNCONFIGURED;
|
|
|
|
// Reset the SPI flash, which will return it to SPI mode even
|
|
// if it's in QPI mode.
|
|
spiReset(spi);
|
|
|
|
spiSetType(spi, ST_SINGLE);
|
|
|
|
// Have the SPI flash pay attention to us
|
|
gpioWrite(spi->pins.hold, 1);
|
|
|
|
// Disable WP
|
|
gpioWrite(spi->pins.wp, 1);
|
|
|
|
spi_get_id(spi);
|
|
|
|
spi->quirks |= SQ_SR2_FROM_SR1;
|
|
// if (spi->id.manufacturer_id == 0x1f)
|
|
if (spi->id.manufacturer_id == 0xef)
|
|
spi->quirks |= SQ_SKIP_SR_WEL | SQ_SECURITY_NYBBLE_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct ff_spi *spiAlloc(void) {
|
|
struct ff_spi *spi = (struct ff_spi *)malloc(sizeof(struct ff_spi));
|
|
memset(spi, 0, sizeof(*spi));
|
|
return spi;
|
|
}
|
|
|
|
void spiSetPin(struct ff_spi *spi, enum spi_pin pin, int val) {
|
|
switch (pin) {
|
|
case SP_MOSI: spi->pins.mosi = val; break;
|
|
case SP_MISO: spi->pins.miso = val; break;
|
|
case SP_HOLD: spi->pins.hold = val; break;
|
|
case SP_WP: spi->pins.wp = val; break;
|
|
case SP_CS: spi->pins.cs = val; break;
|
|
case SP_CLK: spi->pins.clk = val; break;
|
|
case SP_D0: spi->pins.d0 = val; break;
|
|
case SP_D1: spi->pins.d1 = val; break;
|
|
case SP_D2: spi->pins.d2 = val; break;
|
|
case SP_D3: spi->pins.d3 = val; break;
|
|
default: fprintf(stderr, "unrecognized pin: %d\n", pin); break;
|
|
}
|
|
}
|
|
|
|
void spiHold(struct ff_spi *spi) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xb9);
|
|
spiEnd(spi);
|
|
}
|
|
void spiUnhold(struct ff_spi *spi) {
|
|
spiBegin(spi);
|
|
spiCommand(spi, 0xab);
|
|
spiEnd(spi);
|
|
}
|
|
|
|
void spiFree(struct ff_spi **spi) {
|
|
if (!spi)
|
|
return;
|
|
if (!*spi)
|
|
return;
|
|
|
|
spi_set_state(*spi, SS_HARDWARE);
|
|
free(*spi);
|
|
*spi = NULL;
|
|
}
|