fomu-factory-test/sw/src/spi.c

823 lines
15 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fomu/csr.h>
#include "spi.h"
#define fprintf(...) do {} while(0)
static uint8_t do_mirror;
static uint8_t oe_mirror;
#define PI_OUTPUT 1
#define PI_INPUT 0
#define PI_ALT0 PI_INPUT
static void gpioSetMode(int pin, int mode) {
if (mode)
oe_mirror |= 1 << pin;
else
oe_mirror &= ~(1 << pin);
picorvspi_cfg2_write(oe_mirror);
}
static void gpioWrite(int pin, int val) {
if (val)
do_mirror |= 1 << pin;
else
do_mirror &= ~(1 << pin);
picorvspi_cfg1_write(do_mirror);
}
static int gpioRead(int pin) {
return !!(picorvspi_stat1_read() & (1 << pin));
}
enum ff_spi_quirks {
// There is no separate "Write SR 2" command. Instead,
// you must write SR2 after writing SR1
SQ_SR2_FROM_SR1 = (1 << 0),
// Don't issue a "Write Enable" command prior to writing
// a status register
SQ_SKIP_SR_WEL = (1 << 1),
// Security registers are shifted up by 4 bits
SQ_SECURITY_NYBBLE_SHIFT = (1 << 2),
};
struct ff_spi {
enum spi_state state;
enum spi_type type;
enum spi_type desired_type;
struct spi_id id;
enum ff_spi_quirks quirks;
int size_override;
struct {
union {
int mosi;
int d0;
};
union {
int miso;
int d1;
};
union {
int wp;
int d2;
};
union {
int hold;
int d3;
};
int clk;
int cs;
} pins;
};
static struct ff_spi spi;
static void spi_get_id(void);
static void spi_set_state(enum spi_state state) {
if (spi.state == state)
return;
switch (state) {
case SS_SINGLE:
gpioSetMode(spi.pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi.pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi.pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi.pins.miso, PI_INPUT); // MISO
gpioSetMode(spi.pins.hold, PI_OUTPUT);
gpioSetMode(spi.pins.wp, PI_OUTPUT);
break;
case SS_QUAD_RX:
gpioSetMode(spi.pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi.pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi.pins.mosi, PI_INPUT); // MOSI
gpioSetMode(spi.pins.miso, PI_INPUT); // MISO
gpioSetMode(spi.pins.hold, PI_INPUT);
gpioSetMode(spi.pins.wp, PI_INPUT);
break;
case SS_QUAD_TX:
gpioSetMode(spi.pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi.pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi.pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi.pins.miso, PI_OUTPUT); // MISO
gpioSetMode(spi.pins.hold, PI_OUTPUT);
gpioSetMode(spi.pins.wp, PI_OUTPUT);
break;
case SS_HARDWARE:
gpioSetMode(spi.pins.clk, PI_ALT0); // CLK
gpioSetMode(spi.pins.cs, PI_ALT0); // CE0#
gpioSetMode(spi.pins.mosi, PI_ALT0); // MOSI
gpioSetMode(spi.pins.miso, PI_ALT0); // MISO
gpioSetMode(spi.pins.hold, PI_OUTPUT);
gpioSetMode(spi.pins.wp, PI_OUTPUT);
break;
default:
fprintf(stderr, "Unrecognized spi state\n");
return;
}
spi.state = state;
}
void spiPause(void) {
// usleep(1);
return;
}
void spiBegin(void) {
spi_set_state(SS_SINGLE);
if ((spi.type == ST_SINGLE)) {
gpioWrite(spi.pins.wp, 1);
gpioWrite(spi.pins.hold, 1);
}
gpioWrite(spi.pins.cs, 0);
}
void spiEnd(void) {
(void)spi;
gpioWrite(spi.pins.cs, 1);
}
static uint8_t spiXfer(uint8_t out) {
int bit;
uint8_t in = 0;
for (bit = 7; bit >= 0; bit--) {
if (out & (1 << bit)) {
gpioWrite(spi.pins.mosi, 1);
}
else {
gpioWrite(spi.pins.mosi, 0);
}
gpioWrite(spi.pins.clk, 1);
spiPause();
in |= ((!!gpioRead(spi.pins.miso)) << bit);
gpioWrite(spi.pins.clk, 0);
spiPause();
}
return in;
}
static void spiSingleTx(uint8_t out) {
spi_set_state(SS_SINGLE);
spiXfer(out);
}
static uint8_t spiSingleRx(void) {
spi_set_state(SS_SINGLE);
return spiXfer(0xff);
}
static void spiQuadTx(uint8_t out) {
int bit;
spi_set_state(SS_QUAD_TX);
for (bit = 7; bit >= 0; bit -= 4) {
if (out & (1 << (bit - 3))) {
gpioWrite(spi.pins.d0, 1);
}
else {
gpioWrite(spi.pins.d0, 0);
}
if (out & (1 << (bit - 2))) {
gpioWrite(spi.pins.d1, 1);
}
else {
gpioWrite(spi.pins.d1, 0);
}
if (out & (1 << (bit - 1))) {
gpioWrite(spi.pins.d2, 1);
}
else {
gpioWrite(spi.pins.d2, 0);
}
if (out & (1 << (bit - 0))) {
gpioWrite(spi.pins.d3, 1);
}
else {
gpioWrite(spi.pins.d3, 0);
}
gpioWrite(spi.pins.clk, 1);
spiPause();
gpioWrite(spi.pins.clk, 0);
spiPause();
}
}
static uint8_t spiQuadRx(void) {
int bit;
uint8_t in = 0;
spi_set_state(SS_QUAD_RX);
for (bit = 7; bit >= 0; bit -= 4) {
gpioWrite(spi.pins.clk, 1);
spiPause();
in |= ((!!gpioRead(spi.pins.d0)) << (bit - 3));
in |= ((!!gpioRead(spi.pins.d1)) << (bit - 2));
in |= ((!!gpioRead(spi.pins.d2)) << (bit - 1));
in |= ((!!gpioRead(spi.pins.d3)) << (bit - 0));
gpioWrite(spi.pins.clk, 0);
spiPause();
}
return in;
}
int spiTx(uint8_t word) {
switch (spi.type) {
case ST_SINGLE:
spiSingleTx(word);
break;
case ST_QUAD:
case ST_QPI:
spiQuadTx(word);
break;
default:
return -1;
}
return 0;
}
uint8_t spiRx(void) {
switch (spi.type) {
case ST_SINGLE:
return spiSingleRx();
case ST_QUAD:
case ST_QPI:
return spiQuadRx();
default:
return 0xff;
}
}
void spiCommand(uint8_t cmd) {
if (spi.type == ST_QPI)
spiQuadTx(cmd);
else
spiSingleTx(cmd);
}
uint8_t spiCommandRx(void) {
if (spi.type == ST_QPI)
return spiQuadRx();
else
return spiSingleRx();
}
uint8_t spiReadStatus(uint8_t sr) {
uint8_t val = 0xff;
(void)sr;
switch (sr) {
case 1:
case 2:
spiBegin();
spiCommand(0x05);
val = spiCommandRx();
if (sr == 2)
val = spiCommandRx();
spiEnd();
break;
case 3:
spiBegin();
spiCommand(0x15);
val = spiCommandRx();
spiEnd();
break;
default:
fprintf(stderr, "unrecognized status register: %d\n", sr);
break;
}
return val;
}
void spiWriteSecurity(uint8_t sr, uint8_t security[256]) {
if (spi.quirks & SQ_SECURITY_NYBBLE_SHIFT)
sr <<= 4;
spiBegin();
spiCommand(0x06);
spiEnd();
// erase the register
spiBegin();
spiCommand(0x44);
spiCommand(0x00); // A23-16
spiCommand(sr); // A15-8
spiCommand(0x00); // A0-7
spiEnd();
spi_get_id();
sleep(1);
// write enable
spiBegin();
spiCommand(0x06);
spiEnd();
spiBegin();
spiCommand(0x42);
spiCommand(0x00); // A23-16
spiCommand(sr); // A15-8
spiCommand(0x00); // A0-7
int i;
for (i = 0; i < 256; i++)
spiCommand(security[i]);
spiEnd();
spi_get_id();
}
void spiReadSecurity(uint8_t sr, uint8_t security[256]) {
if (spi.quirks & SQ_SECURITY_NYBBLE_SHIFT)
sr <<= 4;
spiBegin();
spiCommand(0x48); // Read security registers
spiCommand(0x00); // A23-16
spiCommand(sr); // A15-8
spiCommand(0x00); // A0-7
int i;
for (i = 0; i < 256; i++)
security[i] = spiCommandRx();
spiEnd();
}
void spiWriteStatus(uint8_t sr, uint8_t val) {
switch (sr) {
case 1:
if (!(spi.quirks & SQ_SKIP_SR_WEL)) {
spiBegin();
spiCommand(0x06);
spiEnd();
}
spiBegin();
spiCommand(0x50);
spiEnd();
spiBegin();
spiCommand(0x01);
spiCommand(val);
spiEnd();
break;
case 2: {
uint8_t sr1 = 0x00;
if (spi.quirks & SQ_SR2_FROM_SR1)
sr1 = spiReadStatus(1);
if (!(spi.quirks & SQ_SKIP_SR_WEL)) {
spiBegin();
spiCommand(0x06);
spiEnd();
}
spiBegin();
spiCommand(0x50);
spiEnd();
spiBegin();
if (spi.quirks & SQ_SR2_FROM_SR1) {
spiCommand(0x01);
spiCommand(sr1);
spiCommand(val);
}
else {
spiCommand(0x31);
spiCommand(val);
}
spiEnd();
break;
}
case 3:
if (!(spi.quirks & SQ_SKIP_SR_WEL)) {
spiBegin();
spiCommand(0x06);
spiEnd();
}
spiBegin();
spiCommand(0x50);
spiEnd();
spiBegin();
spiCommand(0x11);
spiCommand(val);
spiEnd();
break;
default:
fprintf(stderr, "unrecognized status register: %d\n", sr);
break;
}
}
struct spi_id spiId(void) {
return spi.id;
}
#if 0
static void spi_decode_id(void) {
spi.id.bytes = -1; // unknown
spi.id.manufacturer = "Unknown";
spi.id.model = "Unknown";
spi.id.capacity = "Unknown";
if (spi.id.manufacturer_id == 0xef) {
spi.id.manufacturer = "Winbond";
if ((spi.id.memory_type == 0x70)
&& (spi.id.memory_size == 0x18)) {
spi.id.model = "W25Q128JV";
spi.id.capacity = "128 Mbit";
spi.id.bytes = 16 * 1024 * 1024;
}
}
if (spi.id.manufacturer_id == 0x1f) {
spi.id.manufacturer = "Adesto";
if ((spi.id.memory_type == 0x86)
&& (spi.id.memory_size == 0x01)) {
spi.id.model = "AT25SF161";
spi.id.capacity = "16 Mbit";
spi.id.bytes = 1 * 1024 * 1024;
}
}
return;
}
#endif
static void spi_get_id(void) {
spiBegin();
spiCommand(0x90); // Read manufacturer ID
spiCommand(0x00); // Dummy byte 1
spiCommand(0x00); // Dummy byte 2
spiCommand(0x00); // Dummy byte 3
spi.id.manufacturer_id = spiCommandRx();
spi.id.device_id = spiCommandRx();
spiEnd();
spiBegin();
spiCommand(0x9f); // Read device id
spi.id._manufacturer_id = spiCommandRx();
spi.id.memory_type = spiCommandRx();
spi.id.memory_size = spiCommandRx();
spiEnd();
spiBegin();
spiCommand(0xab); // Read electronic signature
spiCommand(0x00); // Dummy byte 1
spiCommand(0x00); // Dummy byte 2
spiCommand(0x00); // Dummy byte 3
spi.id.signature = spiCommandRx();
spiEnd();
spiBegin();
spiCommand(0x4b); // Read unique ID
spiCommand(0x00); // Dummy byte 1
spiCommand(0x00); // Dummy byte 2
spiCommand(0x00); // Dummy byte 3
spiCommand(0x00); // Dummy byte 4
spi.id.serial[0] = spiCommandRx();
spi.id.serial[1] = spiCommandRx();
spi.id.serial[2] = spiCommandRx();
spi.id.serial[3] = spiCommandRx();
spiEnd();
// spi_decode_id();
return;
}
#if 0
void spiOverrideSize(uint32_t size) {
spi.size_override = size;
// If size is 0, re-read the capacity
if (!size)
spi_decode_id();
else
spi.id.bytes = size;
}
#endif
int spiSetType(enum spi_type type) {
if (spi.type == type)
return 0;
switch (type) {
case ST_SINGLE:
if (spi.type == ST_QPI) {
spiBegin();
spiCommand(0xff); // Exit QPI Mode
spiEnd();
}
spi.type = type;
spi_set_state(SS_SINGLE);
break;
case ST_QUAD:
if (spi.type == ST_QPI) {
spiBegin();
spiCommand(0xff); // Exit QPI Mode
spiEnd();
}
// Enable QE bit
spiWriteStatus(2, spiReadStatus(2) | (1 << 1));
spi.type = type;
spi_set_state(SS_QUAD_TX);
break;
case ST_QPI:
// Enable QE bit
spiWriteStatus(2, spiReadStatus(2) | (1 << 1));
spiBegin();
spiCommand(0x38); // Enter QPI Mode
spiEnd();
spi.type = type;
spi_set_state(SS_QUAD_TX);
break;
default:
return 1;
}
return 0;
}
int spiIsBusy(void) {
return spiReadStatus(1) & (1 << 0);
}
void spi_wait_for_not_busy(void) {
while (spiIsBusy())
;
}
int spiBeginErase32(uint32_t erase_addr) {
// Enable Write-Enable Latch (WEL)
spiBegin();
spiCommand(0x06);
spiEnd();
spiBegin();
spiCommand(0x52);
spiCommand(erase_addr >> 16);
spiCommand(erase_addr >> 8);
spiCommand(erase_addr >> 0);
spiEnd();
return 0;
}
int spiBeginErase64(uint32_t erase_addr) {
// Enable Write-Enable Latch (WEL)
spiBegin();
spiCommand(0x06);
spiEnd();
spiBegin();
spiCommand(0xD8);
spiCommand(erase_addr >> 16);
spiCommand(erase_addr >> 8);
spiCommand(erase_addr >> 0);
spiEnd();
return 0;
}
int spiBeginWrite(uint32_t addr, const void *v_data, unsigned int count) {
const uint8_t write_cmd = 0x02;
const uint8_t *data = v_data;
unsigned int i;
// Enable Write-Enable Latch (WEL)
spiBegin();
spiCommand(0x06);
spiEnd();
// uint8_t sr1 = spiReadStatus(1);
// if (!(sr1 & (1 << 1)))
// fprintf(stderr, "error: write-enable latch (WEL) not set, write will probably fail\n");
spiBegin();
spiCommand(write_cmd);
spiCommand(addr >> 16);
spiCommand(addr >> 8);
spiCommand(addr >> 0);
for (i = 0; (i < count) && (i < 256); i++)
spiTx(*data++);
spiEnd();
return 0;
}
uint8_t spiReset(void) {
// XXX You should check the "Ready" bit before doing this!
spiSetType(ST_SINGLE);
spiBegin();
spiCommand(0x66); // "Enable Reset" command
spiEnd();
spiBegin();
spiCommand(0x99); // "Reset Device" command
spiEnd();
// msleep(30);
spiBegin();
spiCommand(0xab); // "Resume from Deep Power-Down" command
spiEnd();
return 0;
}
int spi_init(void) {
spi.state = SS_UNCONFIGURED;
spi.type = ST_UNCONFIGURED;
int i;
for (i = 0; i < 6; i++)
((uint32_t *)&spi.pins)[i] = i;
// Disable memory-mapped mode and enable bit-bang mode
picorvspi_cfg4_write(0);
// Reset the SPI flash, which will return it to SPI mode even
// if it's in QPI mode.
spiReset();
spiSetType(ST_SINGLE);
// Have the SPI flash pay attention to us
gpioWrite(spi.pins.hold, 1);
// Disable WP
gpioWrite(spi.pins.wp, 1);
gpioSetMode(spi.pins.clk, PI_OUTPUT); // CLK
gpioSetMode(spi.pins.cs, PI_OUTPUT); // CE0#
gpioSetMode(spi.pins.mosi, PI_OUTPUT); // MOSI
gpioSetMode(spi.pins.miso, PI_INPUT); // MISO
gpioSetMode(spi.pins.hold, PI_OUTPUT);
gpioSetMode(spi.pins.wp, PI_OUTPUT);
spi_get_id();
spi.quirks |= SQ_SR2_FROM_SR1;
if (spi.id.manufacturer_id == 0xef)
spi.quirks |= SQ_SKIP_SR_WEL | SQ_SECURITY_NYBBLE_SHIFT;
return 0;
}
void spiEnableQuad(void) {
spiWriteStatus(2, spiReadStatus(2) | (1 << 1));
}
void spiSetPin(enum spi_pin pin, int val) {
switch (pin) {
case SP_MOSI: spi.pins.mosi = val; break;
case SP_MISO: spi.pins.miso = val; break;
case SP_HOLD: spi.pins.hold = val; break;
case SP_WP: spi.pins.wp = val; break;
case SP_CS: spi.pins.cs = val; break;
case SP_CLK: spi.pins.clk = val; break;
case SP_D0: spi.pins.d0 = val; break;
case SP_D1: spi.pins.d1 = val; break;
case SP_D2: spi.pins.d2 = val; break;
case SP_D3: spi.pins.d3 = val; break;
}
}
void spiHold(void) {
spiBegin();
spiCommand(0xb9);
spiEnd();
}
void spiUnhold(void) {
spiBegin();
spiCommand(0xab);
spiEnd();
}
int spiWrite(uint32_t addr, const uint8_t *data, unsigned int count) {
unsigned int i;
if (addr & 0xff) {
return 1;
}
// Erase all applicable blocks
uint32_t erase_addr;
for (erase_addr = 0; erase_addr < count; erase_addr += 32768) {
spiBegin();
spiCommand(0x06);
spiEnd();
spiBegin();
spiCommand(0x52);
spiCommand(erase_addr >> 16);
spiCommand(erase_addr >> 8);
spiCommand(erase_addr >> 0);
spiEnd();
spi_wait_for_not_busy();
}
uint8_t write_cmd;
switch (spi.type) {
case ST_SINGLE:
case ST_QPI:
write_cmd = 0x02;
break;
case ST_QUAD:
write_cmd = 0x32;
break;
default:
return 1;
}
while (count) {
spiBegin();
spiCommand(0x06);
spiEnd();
spiBegin();
spiCommand(write_cmd);
spiCommand(addr >> 16);
spiCommand(addr >> 8);
spiCommand(addr >> 0);
for (i = 0; (i < count) && (i < 256); i++)
spiTx(*data++);
spiEnd();
count -= i;
addr += i;
spi_wait_for_not_busy();
}
return 0;
}
int spiRead(uint32_t addr, uint8_t *data, unsigned int count) {
unsigned int i;
spiBegin();
switch (spi.type) {
case ST_SINGLE:
case ST_QPI:
spiCommand(0x0b);
break;
case ST_QUAD:
spiCommand(0x6b);
break;
default:
spiEnd();
return 1;
}
spiCommand(addr >> 16);
spiCommand(addr >> 8);
spiCommand(addr >> 0);
spiCommand(0x00);
for (i = 0; i < count; i++) {
data[i] = spiRx();
}
spiEnd();
return 0;
}
void spiFree(void) {
// Re-enable memory-mapped mode
picorvspi_cfg4_write(0x80);
}