#include #include #include #include #include #include #include #ifdef CSR_USB_EP_0_OUT_EV_PENDING_ADDR /* The state machine states of a control pipe */ enum CONTROL_STATE { WAIT_SETUP, IN_SETUP, IN_DATA, OUT_DATA, LAST_IN_DATA, WAIT_STATUS_IN, WAIT_STATUS_OUT, STALLED, } control_state; // Note that our PIDs are only bits 2 and 3 of the token, // since all other bits are effectively redundant at this point. enum USB_PID { USB_PID_OUT = 0, USB_PID_SOF = 1, USB_PID_IN = 2, USB_PID_SETUP = 3, }; enum epfifo_response { EPF_ACK = 0, EPF_NAK = 1, EPF_NONE = 2, EPF_STALL = 3, }; #define USB_EV_ERROR 1 #define USB_EV_PACKET 2 void usb_disconnect(void) { usb_pullup_out_write(0); } void usb_connect(void) { usb_ep_0_out_ev_pending_write(usb_ep_0_out_ev_enable_read()); usb_ep_0_in_ev_pending_write(usb_ep_0_in_ev_pending_read()); usb_ep_0_out_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); usb_ep_0_in_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); // By default, it wants to respond with NAK. usb_ep_0_out_respond_write(EPF_ACK); usb_ep_0_in_respond_write(EPF_ACK); usb_pullup_out_write(1); irq_setmask(irq_getmask() | (1 << USB_INTERRUPT)); } void usb_init(void) { usb_pullup_out_write(0); return; } static volatile int irq_count = 0; #define EP0OUT_BUFFERS 8 __attribute__((aligned(4))) static uint8_t usb_ep0out_buffer[EP0OUT_BUFFERS][256]; static uint8_t usb_ep0out_buffer_len[EP0OUT_BUFFERS]; static uint8_t usb_ep0out_last_tok[EP0OUT_BUFFERS]; static volatile uint8_t usb_ep0out_wr_ptr; static volatile uint8_t usb_ep0out_rd_ptr; static const int max_byte_length = 64; static const uint8_t *current_data; static int current_length; static int current_offset; static int current_to_send; static int queue_more_data(int epnum) { (void)epnum; // Don't allow requeueing -- only queue more data if we're // currently set up to respond NAK. if (usb_ep_0_in_respond_read() != EPF_NAK) return -1; // Prevent us from double-filling the buffer. if (!usb_ep_0_in_ibuf_empty_read()) { usb_ep_0_in_respond_write(EPF_ACK); return -1; } int this_offset; current_to_send = current_length - current_offset; if (current_to_send > max_byte_length) current_to_send = max_byte_length; for (this_offset = current_offset; this_offset < (current_offset + current_to_send); this_offset++) { usb_ep_0_in_ibuf_head_write(current_data[this_offset]); } usb_ep_0_in_respond_write(EPF_ACK); return 0; } int usb_send(struct usb_device *dev, int epnum, const void *data, int total_count) { (void)dev; while (current_data || current_length) ; current_data = (uint8_t *)data; current_length = total_count; current_offset = 0; control_state = IN_DATA; queue_more_data(epnum); return 0; } int usb_wait_for_send_done(struct usb_device *dev) { while (current_data && current_length) usb_poll(dev); while (usb_ep_0_in_respond_read() == EPF_ACK) ; return 0; } void usb_isr(void) { irq_count++; uint8_t ep0o_pending = usb_ep_0_out_ev_pending_read(); uint8_t ep0i_pending = usb_ep_0_in_ev_pending_read(); // We got an OUT or a SETUP packet. Copy it to usb_ep0out_buffer // and clear the "pending" bit. if (ep0o_pending) { uint8_t last_tok = usb_ep_0_out_last_tok_read(); int byte_count = 0; usb_ep0out_last_tok[usb_ep0out_wr_ptr] = last_tok; uint8_t *obuf = usb_ep0out_buffer[usb_ep0out_wr_ptr]; while (!usb_ep_0_out_obuf_empty_read()) { obuf[byte_count++] = usb_ep_0_out_obuf_head_read(); usb_ep_0_out_obuf_head_write(0); } usb_ep_0_out_ev_pending_write(ep0o_pending); usb_ep0out_buffer_len[usb_ep0out_wr_ptr] = byte_count - 2 /* Strip off CRC16 */; usb_ep0out_wr_ptr = (usb_ep0out_wr_ptr + 1) & (EP0OUT_BUFFERS-1); if (last_tok == USB_PID_SETUP) { current_offset = 0; current_length = 0; current_data = NULL; control_state = IN_SETUP; } } // We just got an "IN" token. Send data if we have it. if (ep0i_pending) { usb_ep_0_in_respond_write(EPF_NAK); current_offset += current_to_send; queue_more_data(0); usb_ep_0_in_ev_pending_write(ep0i_pending); usb_ep_0_out_respond_write(EPF_ACK); usb_ep_0_in_respond_write(EPF_NAK); } return; } void usb_wait(void) { while (!irq_count) ; } int usb_irq_happened(void) { return irq_count; } int usb_ack(struct usb_device *dev, int epnum) { (void)dev; (void)epnum; usb_ep_0_out_respond_write(EPF_ACK); usb_ep_0_in_respond_write(EPF_ACK); return 0; } int usb_err(struct usb_device *dev, int epnum) { (void)dev; (void)epnum; usb_ep_0_out_respond_write(EPF_STALL); usb_ep_0_in_respond_write(EPF_STALL); return 0; } // int puts_noendl(const char *s); // static void print_eptype(void) { // switch (usb_ep0out_last_tok[usb_ep0out_rd_ptr]) { // case 0: puts("O"); break; // // case 1: puts("SOF"); break; // // case 2: puts("IN"); break; // case 3: puts("S"); break; // } // } int usb_recv(struct usb_device *dev, void *buffer, unsigned int buffer_len) { (void)dev; // Set the OUT response to ACK, since we are in a position to receive data now. usb_ep_0_out_respond_write(EPF_ACK); while (1) { if (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) { if (usb_ep0out_last_tok[usb_ep0out_rd_ptr] == USB_PID_OUT) { unsigned int ep0_buffer_len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr]; if (ep0_buffer_len < buffer_len) buffer_len = ep0_buffer_len; usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0; memcpy(buffer, &usb_ep0out_buffer[usb_ep0out_rd_ptr], buffer_len); usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); return buffer_len; } usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); } } return 0; } void usb_poll(struct usb_device *dev) { (void)dev; // If some data was received, then process it. if (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) { const struct usb_setup_request *request = (const struct usb_setup_request *)(usb_ep0out_buffer[usb_ep0out_rd_ptr]); // unsigned int len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr]; uint8_t last_tok = usb_ep0out_last_tok[usb_ep0out_rd_ptr]; usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0; usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); if (last_tok == USB_PID_SETUP) { usb_setup(NULL, request); } } if ((usb_ep_0_in_respond_read() == EPF_NAK) && (current_data)) { current_offset += current_to_send; queue_more_data(0); } } #endif /* CSR_USB_EP_0_OUT_EV_PENDING_ADDR */