186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!doctype html>
 | 
						|
<html lang="en">
 | 
						|
 | 
						|
	<head>
 | 
						|
		<meta charset="utf-8">
 | 
						|
 | 
						|
		<title>reveal.js - Math Plugin</title>
 | 
						|
 | 
						|
		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
 | 
						|
 | 
						|
		<link rel="stylesheet" href="../../css/reveal.css">
 | 
						|
		<link rel="stylesheet" href="../../css/theme/night.css" id="theme">
 | 
						|
	</head>
 | 
						|
 | 
						|
	<body>
 | 
						|
 | 
						|
		<div class="reveal">
 | 
						|
 | 
						|
			<div class="slides">
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h2>reveal.js Math Plugin</h2>
 | 
						|
					<p>A thin wrapper for MathJax</p>
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>The Lorenz Equations</h3>
 | 
						|
 | 
						|
					\[\begin{aligned}
 | 
						|
					\dot{x} & = \sigma(y-x) \\
 | 
						|
					\dot{y} & = \rho x - y - xz \\
 | 
						|
					\dot{z} & = -\beta z + xy
 | 
						|
					\end{aligned} \]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>The Cauchy-Schwarz Inequality</h3>
 | 
						|
 | 
						|
					<script type="math/tex; mode=display">
 | 
						|
						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
 | 
						|
					</script>
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>A Cross Product Formula</h3>
 | 
						|
 | 
						|
					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
 | 
						|
					\mathbf{i} & \mathbf{j} & \mathbf{k} \\
 | 
						|
					\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
 | 
						|
					\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
 | 
						|
					\end{vmatrix}  \]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
 | 
						|
 | 
						|
					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>An Identity of Ramanujan</h3>
 | 
						|
 | 
						|
					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
 | 
						|
					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
 | 
						|
					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>A Rogers-Ramanujan Identity</h3>
 | 
						|
 | 
						|
					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
 | 
						|
					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<h3>Maxwell’s Equations</h3>
 | 
						|
 | 
						|
					\[  \begin{aligned}
 | 
						|
					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
 | 
						|
					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
 | 
						|
					\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
 | 
						|
					\]
 | 
						|
				</section>
 | 
						|
 | 
						|
				<section>
 | 
						|
					<section>
 | 
						|
						<h3>The Lorenz Equations</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[\begin{aligned}
 | 
						|
							\dot{x} & = \sigma(y-x) \\
 | 
						|
							\dot{y} & = \rho x - y - xz \\
 | 
						|
							\dot{z} & = -\beta z + xy
 | 
						|
							\end{aligned} \]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>The Cauchy-Schwarz Inequality</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>A Cross Product Formula</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
 | 
						|
							\mathbf{i} & \mathbf{j} & \mathbf{k} \\
 | 
						|
							\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
 | 
						|
							\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
 | 
						|
							\end{vmatrix}  \]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>An Identity of Ramanujan</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
 | 
						|
							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
 | 
						|
							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>A Rogers-Ramanujan Identity</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
 | 
						|
							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
 | 
						|
					<section>
 | 
						|
						<h3>Maxwell’s Equations</h3>
 | 
						|
 | 
						|
						<div class="fragment">
 | 
						|
							\[  \begin{aligned}
 | 
						|
							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
 | 
						|
							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
 | 
						|
							\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
 | 
						|
							\]
 | 
						|
						</div>
 | 
						|
					</section>
 | 
						|
				</section>
 | 
						|
 | 
						|
			</div>
 | 
						|
 | 
						|
		</div>
 | 
						|
 | 
						|
		<script src="../../lib/js/head.min.js"></script>
 | 
						|
		<script src="../../js/reveal.js"></script>
 | 
						|
 | 
						|
		<script>
 | 
						|
 | 
						|
			Reveal.initialize({
 | 
						|
				history: true,
 | 
						|
				transition: 'linear',
 | 
						|
 | 
						|
				math: {
 | 
						|
					// mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 | 
						|
					config: 'TeX-AMS_HTML-full'
 | 
						|
				},
 | 
						|
 | 
						|
				dependencies: [
 | 
						|
					{ src: '../../lib/js/classList.js' },
 | 
						|
					{ src: '../../plugin/math/math.js', async: true }
 | 
						|
				]
 | 
						|
			});
 | 
						|
 | 
						|
		</script>
 | 
						|
 | 
						|
	</body>
 | 
						|
</html>
 |