/*
 * Copyright (c)2012 Adobe Systems Incorporated. All rights reserved.
 * Copyright (c)2012 Branislav Ulicny
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *     http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

precision mediump float;

// Built-in attributes

attribute vec4 a_position;
attribute vec2 a_texCoord;
attribute vec3 a_triangleCoord;

// Built-in uniforms

uniform mat4 u_projectionMatrix;
uniform vec2 u_meshSize;
uniform vec2 u_textureSize;

// Uniform passed in from CSS

uniform mat4 transform;
uniform float amount;
uniform float randomness;
uniform vec3 flipAxis;

// Varyings

varying float v_depth;
varying vec2 v_uv;

// Constants

const float PI2 = 1.5707963267948966;

// Create perspective matrix

mat4 perspectiveMatrix(float p)
{
    float perspective = - 1.0 / p;
    return mat4(
		1.0, 0.0, 0.0, 0.0,
		0.0, 1.0, 0.0, 0.0,
		0.0, 0.0, 1.0, perspective,
		0.0, 0.0, 0.0, 1.0
	);
}

// Rotate vector

vec3 rotateVectorByQuaternion(vec3 v, vec4 q)
{
	vec3 dest = vec3(0.0);

	float x = v.x, y  = v.y, z  = v.z;
	float qx = q.x, qy = q.y, qz = q.z, qw = q.w;

	// Calculate quaternion * vector.

	float ix =  qw * x + qy * z - qz * y,
		  iy =  qw * y + qz * x - qx * z,
		  iz =  qw * z + qx * y - qy * x,
		  iw = -qx * x - qy * y - qz * z;

	// Calculate result * inverse quaternion.

	dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
	dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
	dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;

	return dest;
}

// Convert rotation.

vec4 axisAngleToQuaternion(vec3 axis, float angle)
{
	vec4 dest = vec4(0.0);

	float halfAngle = angle / 2.0;
	float s = sin(halfAngle);

	dest.x = axis.x * s;
	dest.y = axis.y * s;
	dest.z = axis.z * s;
	dest.w = cos(halfAngle);

	return dest;
}

// Random function based on the tile coordinate.
// This will return the same value for all the vertices in the same tile (i.e. two triangles).

float random(vec2 scale)
{
    // Use the fragment position as a different seed per-pixel.
    return fract(sin(dot(vec2(a_triangleCoord.x, a_triangleCoord.y), scale)) * 4000.0);
}

// Main

void main()
{
	// FIXME: We must swap x and y as a workaround for: 
	// https://bugs.webkit.org/show_bug.cgi?id=96285
	vec2 u_meshSize = u_meshSize.yx;

  	vec4 pos = a_position;
	float aspect = u_textureSize.x / u_textureSize.y;

	float cx = a_triangleCoord.x / u_meshSize.y - 0.5 + 0.5 / u_meshSize.y;
	float cy = a_triangleCoord.y / u_meshSize.x - 0.5 + 0.5 / u_meshSize.x;

	vec3 centroid = vec3(cx, cy, 0.0);
	float r = random(vec2(10.0, 80.0));
	float rr = mix(0.0, PI2, amount * (1.0 + randomness * r));

	vec4 rotation = vec4(flipAxis, rr);
	vec4 qRotation = axisAngleToQuaternion(normalize(rotation.xyz), rotation.w);

	vec3 newPosition = rotateVectorByQuaternion((pos.xyz - centroid)* vec3(aspect, 1., 1.0), qRotation) * vec3(1.0 / aspect, 1.0, 1.0) + centroid;
	pos.xyz = newPosition;

	gl_Position = u_projectionMatrix * transform * pos;

	// Pass varyings to the fragment shader.
	v_depth = abs(rr)/ PI2;
	v_uv = a_texCoord;
}