You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

746 lines
27 KiB

#include <stdint.h>
#include <string.h>
#include "py/nlr.h"
#include "py/compile.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"
#include "extmod/vfs_fat.h"
#include "lib/oofatfs/ff.h"
#include "lib/oofatfs/diskio.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "asf/common/services/sleepmgr/sleepmgr.h"
#include "asf/common/services/usb/udc/udc.h"
#include "asf/common2/services/delay/delay.h"
#include "asf/sam0/drivers/nvm/nvm.h"
#include "asf/sam0/drivers/port/port.h"
#include "asf/sam0/drivers/sercom/usart/usart.h"
#include "asf/sam0/drivers/system/system.h"
#include <board.h>
#include "boards/board.h"
#include "common-hal/analogio/AnalogIn.h"
#include "common-hal/audioio/AudioOut.h"
#include "common-hal/audiobusio/PDMIn.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pulseio/PulseOut.h"
#include "common-hal/pulseio/PWMOut.h"
#include "common-hal/usb_hid/__init__.h"
#include "autoreload.h"
#include "flash_api.h"
#include "mpconfigboard.h"
#include "rgb_led_status.h"
#include "shared_dma.h"
#include "tick.h"
#ifdef EXPRESS_BOARD
#include "common-hal/touchio/TouchIn.h"
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE)
#else
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x010000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE)
#endif
fs_user_mount_t fs_user_mount_flash;
mp_vfs_mount_t mp_vfs_mount_flash;
typedef enum {
NO_SAFE_MODE = 0,
BROWNOUT,
HARD_CRASH,
USER_SAFE_MODE,
} safe_mode_t;
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
if (lex == NULL) {
printf("MemoryError: lexer could not allocate memory\n");
return;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
mp_call_function_0(module_fun);
nlr_pop();
} else {
// uncaught exception
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
}
// we don't make this function static because it needs a lot of stack and we
// want it to be executed without using stack within main() function
void init_flash_fs(void) {
// init the vfs object
fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
vfs_fat->flags = 0;
flash_init_vfs(vfs_fat);
// try to mount the flash
FRESULT res = f_mount(&vfs_fat->fatfs);
if (res == FR_NO_FILESYSTEM) {
// no filesystem so create a fresh one
uint8_t working_buf[_MAX_SS];
res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
// Flush the new file system to make sure its repaired immediately.
flash_flush();
if (res != FR_OK) {
return;
}
// set label
f_setlabel(&vfs_fat->fatfs, "CIRCUITPY");
} else if (res != FR_OK) {
return;
}
mp_vfs_mount_t *vfs = &mp_vfs_mount_flash;
vfs->str = "/";
vfs->len = 1;
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
vfs->next = NULL;
MP_STATE_VM(vfs_mount_table) = vfs;
// The current directory is used as the boot up directory.
// It is set to the internal flash filesystem by default.
MP_STATE_PORT(vfs_cur) = vfs;
}
static char heap[16384 + 4096];
void reset_mp(void) {
reset_status_led();
new_status_color(0x8f008f);
autoreload_stop();
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
flash_flush();
// Clear the readline history. It references the heap we're about to destroy.
readline_init0();
#if MICROPY_ENABLE_GC
gc_init(heap, heap + sizeof(heap));
#endif
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_init(mp_sys_argv, 0);
}
extern volatile bool mp_msc_enabled;
void reset_samd21(void) {
// Reset all SERCOMs except the one being used by the SPI flash.
Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
for (int i = 0; i < SERCOM_INST_NUM; i++) {
#ifdef SPI_FLASH_SERCOM
if (sercom_instances[i] == SPI_FLASH_SERCOM) {
continue;
}
#endif
#ifdef MICROPY_HW_APA102_SERCOM
if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
continue;
}
#endif
sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
}
#ifdef EXPRESS_BOARD
audioout_reset();
touchin_reset();
pdmin_reset();
pulsein_reset();
pulseout_reset();
pwmout_reset();
#endif
analogin_reset();
// Wait for the DAC to sync then reset.
while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
DAC->CTRLA.reg |= DAC_CTRLA_SWRST;
reset_all_pins();
usb_hid_reset();
#ifdef CALIBRATE_CRYSTALLESS
// If we are on USB lets double check our fine calibration for the clock and
// save the new value if its different enough.
if (mp_msc_enabled) {
SYSCTRL->DFLLSYNC.bit.READREQ = 1;
uint16_t saved_calibration = 0x1ff;
if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
}
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
// TODO(tannewt): Run the mass storage stuff if this takes a while.
}
int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
if (abs(current_calibration - saved_calibration) > 10) {
enum status_code error_code;
uint8_t page_buffer[NVMCTRL_ROW_SIZE];
for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
do
{
error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
page_buffer + i * NVMCTRL_PAGE_SIZE,
NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);
}
// If this is the first write, include the header.
if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) {
memcpy(page_buffer, "CIRCUITPYTHON1", 15);
}
// First 16 bytes (0-15) are ID. Little endian!
page_buffer[16] = current_calibration & 0xff;
page_buffer[17] = current_calibration >> 8;
do
{
error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR);
} while (error_code == STATUS_BUSY);
for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
do
{
error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
page_buffer + i * NVMCTRL_PAGE_SIZE,
NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);
}
}
}
#endif
}
bool maybe_run(const char* filename, pyexec_result_t* exec_result) {
mp_import_stat_t stat = mp_import_stat(filename);
if (stat != MP_IMPORT_STAT_FILE) {
return false;
}
mp_hal_stdout_tx_str(filename);
mp_hal_stdout_tx_str(" output:\r\n");
pyexec_file(filename, exec_result);
return true;
}
bool start_mp(safe_mode_t safe_mode) {
bool cdc_enabled_at_start = mp_cdc_enabled;
#ifdef CIRCUITPY_AUTORELOAD_DELAY_MS
if (cdc_enabled_at_start) {
mp_hal_stdout_tx_str("\r\n");
if (autoreload_is_enabled()) {
mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
} else if (safe_mode != NO_SAFE_MODE) {
mp_hal_stdout_tx_str("Running in safe mode! Auto-reload is off.\r\n");
} else if (!autoreload_is_enabled()) {
mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
}
}
#endif
pyexec_result_t result;
bool found_main = false;
if (safe_mode != NO_SAFE_MODE) {
mp_hal_stdout_tx_str("Running in safe mode! Not running saved code.\r\n");
} else {
new_status_color(MAIN_RUNNING);
found_main = maybe_run("code.txt", &result) ||
maybe_run("code.py", &result) ||
maybe_run("main.py", &result) ||
maybe_run("main.txt", &result);
reset_status_led();
if (result.return_code & PYEXEC_FORCED_EXIT) {
return reload_next_character;
}
// If not is USB mode then do not skip the repl.
#ifndef USB_REPL
return false;
#endif
}
// Wait for connection or character.
bool cdc_enabled_before = false;
#if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
new_status_color(ALL_DONE);
uint32_t pattern_start = ticks_ms;
uint32_t total_exception_cycle = 0;
uint8_t ones = result.exception_line % 10;
ones += ones > 0 ? 1 : 0;
uint8_t tens = (result.exception_line / 10) % 10;
tens += tens > 0 ? 1 : 0;
uint8_t hundreds = (result.exception_line / 100) % 10;
hundreds += hundreds > 0 ? 1 : 0;
uint8_t thousands = (result.exception_line / 1000) % 10;
thousands += thousands > 0 ? 1 : 0;
uint8_t digit_sum = ones + tens + hundreds + thousands;
uint8_t num_places = 0;
uint16_t line = result.exception_line;
for (int i = 0; i < 4; i++) {
if ((line % 10) > 0) {
num_places++;
}
line /= 10;
}
if (result.return_code == PYEXEC_EXCEPTION) {
total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places;
}
#endif
while (true) {
#ifdef MICROPY_VM_HOOK_LOOP
MICROPY_VM_HOOK_LOOP
#endif
if (reload_next_character) {
return true;
}
if (usb_rx_count > 0) {
// Skip REPL if reload was requested.
return receive_usb() == CHAR_CTRL_D;
}
if (!cdc_enabled_before && mp_cdc_enabled) {
if (cdc_enabled_at_start) {
mp_hal_stdout_tx_str("\r\n\r\n");
}
if (!cdc_enabled_at_start) {
if (autoreload_is_enabled()) {
mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
} else {
mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
}
}
// Output a user safe mode string if its set.
#ifdef BOARD_USER_SAFE_MODE
if (safe_mode == USER_SAFE_MODE) {
mp_hal_stdout_tx_str("\r\nYou requested starting safe mode by ");
mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
mp_hal_stdout_tx_str(".\r\nTo exit, please reset the board without ");
mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
mp_hal_stdout_tx_str(".\r\n");
} else
#endif
if (safe_mode != NO_SAFE_MODE) {
mp_hal_stdout_tx_str("\r\nYou are running in safe mode which means something really bad happened.\r\n");
if (safe_mode == HARD_CRASH) {
mp_hal_stdout_tx_str("Looks like our core CircuitPython code crashed hard. Whoops!\r\n");
mp_hal_stdout_tx_str("Please file an issue here with the contents of your CIRCUITPY drive:\r\n");
mp_hal_stdout_tx_str("https://github.com/adafruit/circuitpython/issues\r\n");
} else if (safe_mode == BROWNOUT) {
mp_hal_stdout_tx_str("The microcontroller's power dipped. Please make sure your power supply provides \r\n");
mp_hal_stdout_tx_str("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\r\n");
}
}
mp_hal_stdout_tx_str("\r\nPress any key to enter the REPL. Use CTRL-D to reload.\r\n");
}
if (cdc_enabled_before && !mp_cdc_enabled) {
cdc_enabled_at_start = false;
}
cdc_enabled_before = mp_cdc_enabled;
#if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
uint32_t tick_diff = ticks_ms - pattern_start;
if (result.return_code != PYEXEC_EXCEPTION) {
// All is good. Ramp ALL_DONE up and down.
if (tick_diff > ALL_GOOD_CYCLE_MS) {
pattern_start = ticks_ms;
tick_diff = 0;
}
uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2);
if (brightness > 255) {
brightness = 511 - brightness;
}
if (safe_mode == NO_SAFE_MODE) {
new_status_color(color_brightness(ALL_DONE, brightness));
} else {
new_status_color(color_brightness(SAFE_MODE, brightness));
}
} else {
if (tick_diff > total_exception_cycle) {
pattern_start = ticks_ms;
tick_diff = 0;
}
// First flash the file color.
if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) {
if (found_main) {
new_status_color(MAIN_RUNNING);
} else {
new_status_color(BOOT_RUNNING);
}
// Next flash the exception color.
} else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) {
if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) {
new_status_color(INDENTATION_ERROR);
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) {
new_status_color(SYNTAX_ERROR);
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) {
new_status_color(NAME_ERROR);
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) {
new_status_color(OS_ERROR);
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_ValueError)) {
new_status_color(VALUE_ERROR);
} else {
new_status_color(OTHER_ERROR);
}
// Finally flash the line number digits from highest to lowest.
// Zeroes will not produce a flash but can be read by the absence of
// a color from the sequence.
} else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) {
uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2;
if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) {
new_status_color(BLACK);
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) {
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) {
new_status_color(BLACK);
} else {
new_status_color(THOUSANDS);
}
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) {
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) {
new_status_color(BLACK);
} else {
new_status_color(HUNDREDS);
}
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) {
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) {
new_status_color(BLACK);
} else {
new_status_color(TENS);
}
} else {
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) {
new_status_color(BLACK);
} else {
new_status_color(ONES);
}
}
} else {
new_status_color(BLACK);
}
}
#else
(void) found_main; // Pretend to use found_main so the compiler doesn't complain.
#endif
}
}
#ifdef UART_REPL
struct usart_module usart_instance;
#endif
#ifdef ENABLE_MICRO_TRACE_BUFFER
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
// 7 -> 128 packets
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
// Size in uint32_t. Two per packet.
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
// Size in bytes. 4 bytes per uint32_t.
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE];
#endif
// Serial number as hex characters.
char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
void load_serial_number(void) {
char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F'};
uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
(uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 8; j++) {
uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf;
serial_number[i * 8 + j] = nibble_to_hex[nibble];
}
}
}
// Provided by the linker;
extern uint32_t _ezero;
safe_mode_t samd21_init(void) {
#ifdef ENABLE_MICRO_TRACE_BUFFER
REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
#endif
// On power on start or external reset, set _ezero to the canary word. If it
// gets killed, we boot in safe mod. _ezero is the boundary between statically
// allocated memory including the fixed MicroPython heap and the stack. If either
// misbehaves, the canary will not be in tact after soft reset.
#ifdef CIRCUITPY_CANARY_WORD
if (PM->RCAUSE.bit.POR == 1 || PM->RCAUSE.bit.EXT == 1) {
_ezero = CIRCUITPY_CANARY_WORD;
} else if (PM->RCAUSE.bit.SYST == 1) {
// If we're starting from a system reset we're likely coming from the
// bootloader or hard fault handler. If we're coming from the handler
// the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to
// revive the canary so that a second hard fault won't restart. Resets
// from anywhere else are ok.
if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) {
_ezero = ~CIRCUITPY_CANARY_WORD;
} else {
_ezero = CIRCUITPY_CANARY_WORD;
}
}
#endif
load_serial_number();
irq_initialize_vectors();
cpu_irq_enable();
// Initialize the sleep manager
sleepmgr_init();
uint16_t dfll_fine_calibration = 0x1ff;
#ifdef CALIBRATE_CRYSTALLESS
// This is stored in an NVM page after the text and data storage but before
// the optional file system. The first 16 bytes are the identifier for the
// section.
if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
dfll_fine_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
}
#endif
// We pass in the DFLL fine calibration because we can't change it once the
// clock is going.
system_init(dfll_fine_calibration);
delay_init();
board_init();
// Configure millisecond timer initialization.
tick_init();
// Uncomment to init PIN_PA17 for debugging.
// struct port_config pin_conf;
// port_get_config_defaults(&pin_conf);
//
// pin_conf.direction = PORT_PIN_DIR_OUTPUT;
// port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
// port_pin_set_output_level(MICROPY_HW_LED1, false);
rgb_led_status_init();
// Init the nvm controller.
struct nvm_config config_nvm;
nvm_get_config_defaults(&config_nvm);
config_nvm.manual_page_write = false;
nvm_set_config(&config_nvm);
init_shared_dma();
#ifdef CIRCUITPY_CANARY_WORD
// Run in safe mode if the canary is corrupt.
if (_ezero != CIRCUITPY_CANARY_WORD) {
return HARD_CRASH;
}
#endif
if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) {
return BROWNOUT;
}
if (board_requests_safe_mode()) {
return USER_SAFE_MODE;
}
#if CIRCUITPY_INTERNAL_NVM_SIZE > 0
// Upgrade the nvm flash to include one sector for eeprom emulation.
struct nvm_fusebits fuses;
if (nvm_get_fuses(&fuses) == STATUS_OK &&
fuses.eeprom_size == NVM_EEPROM_EMULATOR_SIZE_0) {
#ifdef INTERNAL_FLASH_FS
// Shift the internal file system up one row.
for (uint8_t row = 0; row < TOTAL_INTERNAL_FLASH_SIZE / NVMCTRL_ROW_SIZE; row++) {
uint32_t new_row_address = INTERNAL_FLASH_MEM_SEG1_START_ADDR + row * NVMCTRL_ROW_SIZE;
nvm_erase_row(new_row_address);
nvm_write_buffer(new_row_address,
(uint8_t*) (new_row_address + CIRCUITPY_INTERNAL_EEPROM_SIZE),
NVMCTRL_ROW_SIZE);
}
#endif
uint32_t nvm_size = CIRCUITPY_INTERNAL_NVM_SIZE;
uint8_t enum_value = 6;
while (nvm_size > 256 && enum_value != 255) {
nvm_size /= 2;
enum_value -= 1;
}
if (enum_value != 255 && nvm_size == 256) {
// Mark the last section as eeprom now.
fuses.eeprom_size = (enum nvm_eeprom_emulator_size) enum_value;
nvm_set_fuses(&fuses);
}
}
#endif
return NO_SAFE_MODE;
}
extern uint32_t _estack;
extern uint32_t _ebss;
int main(void) {
// initialise the cpu and peripherals
safe_mode_t safe_mode = samd21_init();
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_ctrl_init();
mp_stack_set_limit((char*)&_estack - (char*)&_ebss - 1024);
#if MICROPY_MAX_STACK_USAGE
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
mp_stack_set_bottom(&_ezero + 1);
mp_stack_fill_with_sentinel();
#endif
init_flash_fs();
// Reset everything and prep MicroPython to run boot.py.
reset_samd21();
reset_board();
reset_mp();
// Turn on autoreload by default but before boot.py in case it wants to change it.
autoreload_enable();
// By default our internal flash is readonly to local python code and
// writeable over USB. Set it here so that boot.py can change it.
flash_set_usb_writeable(true);
// If not in safe mode, run boot before initing USB and capture output in a
// file.
if (safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
new_status_color(BOOT_RUNNING);
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
// Since USB isn't up yet we can cheat and let ourselves write the boot
// output file.
flash_set_usb_writeable(false);
FIL file_pointer;
boot_output_file = &file_pointer;
f_open(&((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs,
boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
flash_set_usb_writeable(true);
#endif
// TODO(tannewt): Re-add support for flashing boot error output.
bool found_boot = maybe_run("settings.txt", NULL) ||
maybe_run("settings.py", NULL) ||
maybe_run("boot.py", NULL) ||
maybe_run("boot.txt", NULL);
(void) found_boot;
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
f_close(boot_output_file);
flash_flush();
boot_output_file = NULL;
#endif
// Reset to remove any state that boot.py setup. It should only be used to
// change internal state thats not in the heap.
reset_samd21();
reset_mp();
}
usb_hid_init();
// Start USB after getting everything going.
#ifdef USB_REPL
udc_start();
#endif
// Boot script is finished, so now go into REPL/main mode.
int exit_code = PYEXEC_FORCED_EXIT;
bool skip_repl = true;
bool first_run = true;
for (;;) {
if (!skip_repl) {
// The REPL mode can change, or it can request a reload.
bool autoreload_on = autoreload_is_enabled();
autoreload_disable();
new_status_color(REPL_RUNNING);
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
exit_code = pyexec_raw_repl();
} else {
exit_code = pyexec_friendly_repl();
}
if (autoreload_on) {
autoreload_enable();
}
reset_samd21();
reset_board();
reset_mp();
}
if (exit_code == PYEXEC_FORCED_EXIT) {
if (!first_run) {
mp_hal_stdout_tx_str("soft reboot\r\n");
}
first_run = false;
skip_repl = start_mp(safe_mode);
reset_samd21();
reset_board();
reset_mp();
} else if (exit_code != 0) {
break;
}
}
mp_deinit();
return 0;
}
void gc_collect(void) {
// WARNING: This gc_collect implementation doesn't try to get root
// pointers from CPU registers, and thus may function incorrectly.
void *dummy;
gc_collect_start();
// This collects root pointers from the VFS mount table. Some of them may
// have lost their references in the VM even though they are mounted.
gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
// This naively collects all object references from an approximate stack
// range.
gc_collect_root(&dummy, ((mp_uint_t)&_estack - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
gc_collect_end();
}
void NORETURN nlr_jump_fail(void *val) {
HardFault_Handler();
while (true) {}
}
void NORETURN __fatal_error(const char *msg) {
HardFault_Handler();
while (true) {}
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif