You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
608 lines
20 KiB
608 lines
20 KiB
/* |
|
|
|
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. |
|
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. |
|
|
|
The implementation is verified against the test vectors in: |
|
National Institute of Standards and Technology Special Publication 800-38A 2001 ED |
|
|
|
ECB-AES128 |
|
---------- |
|
|
|
plain-text: |
|
6bc1bee22e409f96e93d7e117393172a |
|
ae2d8a571e03ac9c9eb76fac45af8e51 |
|
30c81c46a35ce411e5fbc1191a0a52ef |
|
f69f2445df4f9b17ad2b417be66c3710 |
|
|
|
key: |
|
2b7e151628aed2a6abf7158809cf4f3c |
|
|
|
resulting cipher |
|
3ad77bb40d7a3660a89ecaf32466ef97 |
|
f5d3d58503b9699de785895a96fdbaaf |
|
43b1cd7f598ece23881b00e3ed030688 |
|
7b0c785e27e8ad3f8223207104725dd4 |
|
|
|
|
|
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) |
|
You should pad the end of the string with zeros if this is not the case. |
|
For AES192/256 the key size is proportionally larger. |
|
|
|
*/ |
|
|
|
/*****************************************************************************/ |
|
/* Includes: */ |
|
/*****************************************************************************/ |
|
#include <string.h> // CBC mode, for memset |
|
#include "aes.h" |
|
|
|
/*****************************************************************************/ |
|
/* Defines: */ |
|
/*****************************************************************************/ |
|
// The number of columns comprising a state in AES. This is a constant in AES. |
|
// Value=4 |
|
#define Nb 4UL |
|
|
|
#if defined(AES256) && (AES256 == 1) |
|
#define Nk256 8UL |
|
#define Nr256 14UL |
|
#endif |
|
#if defined(AES192) && (AES192 == 1) |
|
#define Nk192 6UL |
|
#define Nr192 12UL |
|
#endif |
|
#if defined(AES128) && (AES128 == 1) |
|
#define Nk128 4UL // The number of 32 bit words in a key. |
|
#define Nr128 10UL // The number of rounds in AES Cipher. |
|
#endif |
|
|
|
// jcallan@github points out that declaring Multiply as a function reduces code |
|
// size considerably with the Keil ARM compiler. See this link for more |
|
// information: https://github.com/kokke/tiny-AES-C/pull/3 |
|
#ifndef MULTIPLY_AS_A_FUNCTION |
|
#define MULTIPLY_AS_A_FUNCTION 0 |
|
#endif |
|
|
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
/* Private variables: */ |
|
/*****************************************************************************/ |
|
// state - array holding the intermediate results during decryption. |
|
typedef uint8_t state_t[4][4]; |
|
|
|
|
|
|
|
// The lookup-tables are marked const so they can be placed in read-only storage |
|
// instead of RAM The numbers below can be computed dynamically trading ROM for |
|
// RAM - This can be useful in (embedded) bootloader applications, where ROM is |
|
// often limited. |
|
static const uint8_t sbox[256] = { |
|
//0 1 2 3 4 5 6 7 8 9 A B C D E F |
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
|
|
|
static const uint8_t rsbox[256] = { |
|
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
|
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
|
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
|
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
|
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
|
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
|
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
|
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
|
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
|
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
|
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
|
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
|
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
|
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
|
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
|
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; |
|
|
|
// The round constant word array, Rcon[i], contains the values given by x to the |
|
// power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) |
|
static const uint8_t Rcon[11] = { |
|
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; |
|
|
|
/* |
|
* Jordan Goulder points out in PR #12 |
|
* (https://github.com/kokke/tiny-AES-C/pull/12), that you can remove most of |
|
* the elements in the Rcon array, because they are unused. |
|
* |
|
* From Wikipedia's article on the Rijndael key schedule @ |
|
* https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon |
|
* |
|
* "Only the first some of these constants are actually used – up to rcon[10] |
|
* for AES-128 (as 11 round keys are needed), up to rcon[8] for AES-192, up to |
|
* rcon[7] for AES-256. rcon[0] is not used in AES algorithm." |
|
*/ |
|
|
|
|
|
/*****************************************************************************/ |
|
/* Private functions: */ |
|
/*****************************************************************************/ |
|
static const uint8_t *GetRoundKey(const struct AES_ctx *ctx) { |
|
switch (ctx->KeyLength) { |
|
#if defined(AES128) && (AES128 == 1) |
|
case 16: return ctx->RoundKey128; |
|
#endif |
|
#if defined(AES192) && (AES192 == 1) |
|
case 24: return ctx->RoundKey192; |
|
#endif |
|
#if defined(AES256) && (AES256 == 1) |
|
case 32: return ctx->RoundKey256; |
|
#endif |
|
} |
|
return NULL; |
|
} |
|
|
|
|
|
/* |
|
static uint8_t getSBoxValue(uint8_t num) |
|
{ |
|
return sbox[num]; |
|
} |
|
*/ |
|
#define getSBoxValue(num) (sbox[(num)]) |
|
/* |
|
static uint8_t getSBoxInvert(uint8_t num) |
|
{ |
|
return rsbox[num]; |
|
} |
|
*/ |
|
#define getSBoxInvert(num) (rsbox[(num)]) |
|
|
|
// This function produces Nb(Nr+1) round keys. The round keys are used in each |
|
// round to decrypt the states. |
|
static void KeyExpansion(struct AES_ctx* ctx, const uint8_t* Key) |
|
{ |
|
uint8_t* RoundKey = (uint8_t *)GetRoundKey(ctx); |
|
|
|
unsigned i, j, k; |
|
uint8_t tempa[4]; // Used for the column/row operations |
|
|
|
// The first round key is the key itself. |
|
for (i = 0; i < ctx->Nk; ++i) |
|
{ |
|
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; |
|
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; |
|
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; |
|
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; |
|
} |
|
|
|
// All other round keys are found from the previous round keys. |
|
for (i = ctx->Nk; i < Nb * (ctx->Nr + 1); ++i) |
|
{ |
|
{ |
|
k = (i - 1) * 4; |
|
tempa[0]=RoundKey[k + 0]; |
|
tempa[1]=RoundKey[k + 1]; |
|
tempa[2]=RoundKey[k + 2]; |
|
tempa[3]=RoundKey[k + 3]; |
|
|
|
} |
|
|
|
if (i % ctx->Nk == 0) |
|
{ |
|
// This function shifts the 4 bytes in a word to the left once. |
|
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0] |
|
|
|
// Function RotWord() |
|
{ |
|
const uint8_t u8tmp = tempa[0]; |
|
tempa[0] = tempa[1]; |
|
tempa[1] = tempa[2]; |
|
tempa[2] = tempa[3]; |
|
tempa[3] = u8tmp; |
|
} |
|
|
|
// SubWord() is a function that takes a four-byte input word and applies |
|
// the S-box to each of the four bytes to produce an output word. |
|
|
|
// Function Subword() |
|
{ |
|
tempa[0] = getSBoxValue(tempa[0]); |
|
tempa[1] = getSBoxValue(tempa[1]); |
|
tempa[2] = getSBoxValue(tempa[2]); |
|
tempa[3] = getSBoxValue(tempa[3]); |
|
} |
|
|
|
tempa[0] = tempa[0] ^ Rcon[i/ctx->Nk]; |
|
} |
|
#if defined(AES256) && (AES256 == 1) |
|
if (ctx->KeyLength == 32) { |
|
if (i % ctx->Nk == 4) |
|
{ |
|
// Function Subword() |
|
{ |
|
tempa[0] = getSBoxValue(tempa[0]); |
|
tempa[1] = getSBoxValue(tempa[1]); |
|
tempa[2] = getSBoxValue(tempa[2]); |
|
tempa[3] = getSBoxValue(tempa[3]); |
|
} |
|
} |
|
} |
|
#endif |
|
j = i * 4; k=(i - ctx->Nk) * 4; |
|
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; |
|
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; |
|
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; |
|
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; |
|
} |
|
} |
|
|
|
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key, uint32_t keylen) |
|
{ |
|
ctx->KeyLength = keylen; |
|
switch (ctx->KeyLength) { |
|
#if defined(AES128) && (AES128 == 1) |
|
case 16: ctx->Nr = Nr128; ctx->Nk = Nk128; break; |
|
#endif |
|
#if defined(AES192) && (AES192 == 1) |
|
case 24: ctx->Nr = Nr192; ctx->Nk = Nk192; break; |
|
#endif |
|
#if defined(AES256) && (AES256 == 1) |
|
case 32: ctx->Nr = Nr256; ctx->Nk = Nk256; break; |
|
#endif |
|
default: ctx->Nr = 0; ctx->Nk = 0; break; |
|
} |
|
KeyExpansion(ctx, key); |
|
} |
|
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) |
|
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, uint32_t keylen, const uint8_t* iv) |
|
{ |
|
AES_init_ctx(ctx, key, keylen); |
|
memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
|
} |
|
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) |
|
{ |
|
memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
|
} |
|
#endif |
|
|
|
// This function adds the round key to state. The round key is added to the |
|
// state by an XOR function. |
|
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) |
|
{ |
|
uint8_t i,j; |
|
for (i = 0; i < 4; ++i) |
|
{ |
|
for (j = 0; j < 4; ++j) |
|
{ |
|
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; |
|
} |
|
} |
|
} |
|
|
|
// The SubBytes Function Substitutes the values in the state matrix with values |
|
// in an S-box. |
|
static void SubBytes(state_t* state) |
|
{ |
|
uint8_t i, j; |
|
for (i = 0; i < 4; ++i) |
|
{ |
|
for (j = 0; j < 4; ++j) |
|
{ |
|
(*state)[j][i] = getSBoxValue((*state)[j][i]); |
|
} |
|
} |
|
} |
|
|
|
// The ShiftRows() function shifts the rows in the state to the left. Each row |
|
// is shifted with different offset. Offset = Row number. So the first row is |
|
// not shifted. |
|
static void ShiftRows(state_t* state) |
|
{ |
|
uint8_t temp; |
|
|
|
// Rotate first row 1 columns to left |
|
temp = (*state)[0][1]; |
|
(*state)[0][1] = (*state)[1][1]; |
|
(*state)[1][1] = (*state)[2][1]; |
|
(*state)[2][1] = (*state)[3][1]; |
|
(*state)[3][1] = temp; |
|
|
|
// Rotate second row 2 columns to left |
|
temp = (*state)[0][2]; |
|
(*state)[0][2] = (*state)[2][2]; |
|
(*state)[2][2] = temp; |
|
|
|
temp = (*state)[1][2]; |
|
(*state)[1][2] = (*state)[3][2]; |
|
(*state)[3][2] = temp; |
|
|
|
// Rotate third row 3 columns to left |
|
temp = (*state)[0][3]; |
|
(*state)[0][3] = (*state)[3][3]; |
|
(*state)[3][3] = (*state)[2][3]; |
|
(*state)[2][3] = (*state)[1][3]; |
|
(*state)[1][3] = temp; |
|
} |
|
|
|
static uint8_t xtime(uint8_t x) |
|
{ |
|
return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); |
|
} |
|
|
|
// MixColumns function mixes the columns of the state matrix |
|
static void MixColumns(state_t* state) |
|
{ |
|
uint8_t i; |
|
uint8_t Tmp, Tm, t; |
|
for (i = 0; i < 4; ++i) |
|
{ |
|
t = (*state)[i][0]; |
|
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; |
|
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; |
|
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; |
|
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; |
|
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; |
|
} |
|
} |
|
|
|
// Multiply is used to multiply numbers in the field GF(2^8) |
|
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary |
|
// The compiler seems to be able to vectorize the operation better this way. |
|
// See https://github.com/kokke/tiny-AES-c/pull/34 |
|
#if MULTIPLY_AS_A_FUNCTION |
|
static uint8_t Multiply(uint8_t x, uint8_t y) |
|
{ |
|
return (((y & 1) * x) ^ |
|
((y>>1 & 1) * xtime(x)) ^ |
|
((y>>2 & 1) * xtime(xtime(x))) ^ |
|
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ |
|
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ |
|
} |
|
#else |
|
#define Multiply(x, y) \ |
|
( ((y & 1) * x) ^ \ |
|
((y>>1 & 1) * xtime(x)) ^ \ |
|
((y>>2 & 1) * xtime(xtime(x))) ^ \ |
|
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ |
|
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ |
|
|
|
#endif |
|
|
|
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
// MixColumns function mixes the columns of the state matrix. The method used to |
|
// multiply may be difficult to understand for the inexperienced. Please use the |
|
// references to gain more information. |
|
static void InvMixColumns(state_t* state) |
|
{ |
|
int i; |
|
uint8_t a, b, c, d; |
|
for (i = 0; i < 4; ++i) |
|
{ |
|
a = (*state)[i][0]; |
|
b = (*state)[i][1]; |
|
c = (*state)[i][2]; |
|
d = (*state)[i][3]; |
|
|
|
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); |
|
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); |
|
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); |
|
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); |
|
} |
|
} |
|
|
|
|
|
// The SubBytes Function Substitutes the values in the state matrix with values |
|
// in an S-box. |
|
static void InvSubBytes(state_t* state) |
|
{ |
|
uint8_t i, j; |
|
for (i = 0; i < 4; ++i) |
|
{ |
|
for (j = 0; j < 4; ++j) |
|
{ |
|
(*state)[j][i] = getSBoxInvert((*state)[j][i]); |
|
} |
|
} |
|
} |
|
|
|
static void InvShiftRows(state_t* state) |
|
{ |
|
uint8_t temp; |
|
|
|
// Rotate first row 1 columns to right |
|
temp = (*state)[3][1]; |
|
(*state)[3][1] = (*state)[2][1]; |
|
(*state)[2][1] = (*state)[1][1]; |
|
(*state)[1][1] = (*state)[0][1]; |
|
(*state)[0][1] = temp; |
|
|
|
// Rotate second row 2 columns to right |
|
temp = (*state)[0][2]; |
|
(*state)[0][2] = (*state)[2][2]; |
|
(*state)[2][2] = temp; |
|
|
|
temp = (*state)[1][2]; |
|
(*state)[1][2] = (*state)[3][2]; |
|
(*state)[3][2] = temp; |
|
|
|
// Rotate third row 3 columns to right |
|
temp = (*state)[0][3]; |
|
(*state)[0][3] = (*state)[1][3]; |
|
(*state)[1][3] = (*state)[2][3]; |
|
(*state)[2][3] = (*state)[3][3]; |
|
(*state)[3][3] = temp; |
|
} |
|
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
|
|
// Cipher is the main function that encrypts the PlainText. |
|
static void Cipher(state_t* state, const struct AES_ctx* ctx) |
|
{ |
|
const uint8_t* RoundKey = GetRoundKey(ctx); |
|
uint8_t round = 0; |
|
|
|
// Add the First round key to the state before starting the rounds. |
|
AddRoundKey(0, state, RoundKey); |
|
|
|
// There will be Nr rounds. The first Nr-1 rounds are identical. These Nr |
|
// rounds are executed in the loop below. Last one without MixColumns() |
|
for (round = 1; ; ++round) |
|
{ |
|
SubBytes(state); |
|
ShiftRows(state); |
|
if (round == ctx->Nr) { |
|
break; |
|
} |
|
MixColumns(state); |
|
AddRoundKey(round, state, RoundKey); |
|
} |
|
// Add round key to last round |
|
AddRoundKey(ctx->Nr, state, RoundKey); |
|
} |
|
|
|
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
static void InvCipher(state_t* state, const struct AES_ctx* ctx) |
|
{ |
|
const uint8_t* RoundKey = GetRoundKey(ctx); |
|
uint8_t round = 0; |
|
|
|
// Add the First round key to the state before starting the rounds. |
|
AddRoundKey(ctx->Nr, state, RoundKey); |
|
|
|
// There will be Nr rounds. The first Nr-1 rounds are identical. These Nr |
|
// rounds are executed in the loop below. Last one without InvMixColumn() |
|
for (round = (ctx->Nr - 1); ; --round) |
|
{ |
|
InvShiftRows(state); |
|
InvSubBytes(state); |
|
AddRoundKey(round, state, RoundKey); |
|
if (round == 0) { |
|
break; |
|
} |
|
InvMixColumns(state); |
|
} |
|
|
|
} |
|
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
|
|
/*****************************************************************************/ |
|
/* Public functions: */ |
|
/*****************************************************************************/ |
|
#if defined(ECB) && (ECB == 1) |
|
|
|
|
|
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf) |
|
{ |
|
// The next function call encrypts the PlainText with the Key using AES |
|
// algorithm. |
|
Cipher((state_t*)buf, ctx); |
|
} |
|
|
|
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf) |
|
{ |
|
// The next function call decrypts the PlainText with the Key using AES |
|
// algorithm. |
|
InvCipher((state_t*)buf, ctx); |
|
} |
|
|
|
|
|
#endif // #if defined(ECB) && (ECB == 1) |
|
|
|
|
|
|
|
|
|
|
|
#if defined(CBC) && (CBC == 1) |
|
|
|
|
|
static void XorWithIv(uint8_t* buf, const uint8_t* Iv) |
|
{ |
|
uint8_t i; |
|
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size |
|
{ |
|
buf[i] ^= Iv[i]; |
|
} |
|
} |
|
|
|
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length) |
|
{ |
|
uintptr_t i; |
|
uint8_t *Iv = ctx->Iv; |
|
for (i = 0; i < length; i += AES_BLOCKLEN) |
|
{ |
|
XorWithIv(buf, Iv); |
|
Cipher((state_t*)buf, ctx); |
|
Iv = buf; |
|
buf += AES_BLOCKLEN; |
|
} |
|
/* store Iv in ctx for next call */ |
|
memcpy(ctx->Iv, Iv, AES_BLOCKLEN); |
|
} |
|
|
|
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) |
|
{ |
|
uintptr_t i; |
|
uint8_t storeNextIv[AES_BLOCKLEN]; |
|
for (i = 0; i < length; i += AES_BLOCKLEN) |
|
{ |
|
memcpy(storeNextIv, buf, AES_BLOCKLEN); |
|
InvCipher((state_t*)buf, ctx); |
|
XorWithIv(buf, ctx->Iv); |
|
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); |
|
buf += AES_BLOCKLEN; |
|
} |
|
|
|
} |
|
|
|
#endif // #if defined(CBC) && (CBC == 1) |
|
|
|
|
|
|
|
#if defined(CTR) && (CTR == 1) |
|
|
|
/* Symmetrical operation: same function for encrypting as for decrypting. Note |
|
any IV/nonce should never be reused with the same key */ |
|
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) |
|
{ |
|
uint8_t buffer[AES_BLOCKLEN]; |
|
|
|
unsigned i; |
|
int bi; |
|
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) |
|
{ |
|
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ |
|
{ |
|
memcpy(buffer, ctx->Iv, AES_BLOCKLEN); |
|
Cipher((state_t*)buffer, ctx); |
|
|
|
/* Increment Iv and handle overflow */ |
|
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) |
|
{ |
|
/* inc will overflow */ |
|
if (ctx->Iv[bi] == 255) |
|
{ |
|
ctx->Iv[bi] = 0; |
|
continue; |
|
} |
|
ctx->Iv[bi] += 1; |
|
break; |
|
} |
|
bi = 0; |
|
} |
|
|
|
buf[i] = (buf[i] ^ buffer[bi]); |
|
} |
|
} |
|
|
|
#endif // #if defined(CTR) && (CTR == 1)
|
|
|