stmhal: Initial implementation of cc3k module and driver.

Pulled in and modified work done by mux/iabdalkader on cc3k driver, from
iabdalkader-cc3k-update branch.  That branch was terribly messy and had
too many conflicts to merge neatly.
crypto-aes
Damien George 8 years ago
parent f996d8854f
commit b766e79510

@ -22,7 +22,6 @@ HAL_DIR=hal
USBDEV_DIR=usbdev
#USBHOST_DIR=usbhost
FATFS_DIR=fatfs
CC3K_DIR=cc3k
DFU=../tools/dfu.py
# may need to prefix dfu-util with sudo
DFU_UTIL ?= dfu-util
@ -39,7 +38,6 @@ INC += -I$(HAL_DIR)/inc
INC += -I$(USBDEV_DIR)/core/inc -I$(USBDEV_DIR)/class/cdc_msc_hid/inc
#INC += -I$(USBHOST_DIR)
INC += -I$(FATFS_DIR)/src
INC += -I$(CC3K_DIR)
CFLAGS_CORTEX_M4 = -mthumb -mtune=cortex-m4 -mabi=aapcs-linux -mcpu=cortex-m4 -mfpu=fpv4-sp-d16 -mfloat-abi=hard -fsingle-precision-constant -Wdouble-promotion
CFLAGS = $(INC) -Wall -Werror -ansi -std=gnu99 -nostdlib $(CFLAGS_MOD) $(CFLAGS_CORTEX_M4) $(COPT)
@ -187,19 +185,6 @@ SRC_FATFS = $(addprefix $(FATFS_DIR)/src/,\
option/ccsbcs.c \
)
SRC_CC3K = $(addprefix $(CC3K_DIR)/,\
cc3000_common.c \
evnt_handler.c \
hci.c \
netapp.c \
nvmem.c \
security.c \
socket.c \
wlan.c \
ccspi.c \
pybcc3k.c \
)
ifeq ($(MICROPY_PY_WIZNET5K),1)
WIZNET5K_DIR=drivers/wiznet5k
INC += -I$(TOP)/$(WIZNET5K_DIR)
@ -213,6 +198,30 @@ SRC_MOD += $(addprefix $(WIZNET5K_DIR)/,\
)
endif
# for CC3000 module
ifeq ($(MICROPY_PY_CC3K),1)
CC3000_DIR=drivers/cc3000
INC += -I$(TOP)/$(CC3000_DIR)/inc
CFLAGS_MOD += -DMICROPY_PY_CC3K=1
SRC_MOD += modcc3k.c
SRC_MOD += $(addprefix $(CC3000_DIR)/src/,\
cc3000_common.c \
evnt_handler.c \
hci.c \
netapp.c \
nvmem.c \
security.c \
socket.c \
wlan.c \
ccspi.c \
inet_ntop.c \
inet_pton.c \
)
# patch.c \
# patch_prog.c \
)
endif
OBJ =
OBJ += $(PY_O)
OBJ += $(addprefix $(BUILD)/, $(SRC_LIB:.c=.o))
@ -221,7 +230,6 @@ OBJ += $(addprefix $(BUILD)/, $(SRC_S:.s=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_HAL:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_USBDEV:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_FATFS:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_CC3K:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_MOD:.c=.o))
OBJ += $(BUILD)/pins_$(BOARD).o

@ -16,7 +16,6 @@
#define MICROPY_HW_ENABLE_I2C1 (1)
#define MICROPY_HW_ENABLE_SPI1 (1)
#define MICROPY_HW_ENABLE_SPI3 (1)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW/UBTN (Needs Jumper UBTN) is pulled low. Pressing the button makes the input go high.
#define MICROPY_HW_USRSW_PIN (pin_A0)

@ -20,7 +20,6 @@
#define MICROPY_HW_ENABLE_I2C1 (0)
#define MICROPY_HW_ENABLE_SPI1 (0)
#define MICROPY_HW_ENABLE_SPI3 (0)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW is pulled low. Pressing the button makes the input go high.
#define MICROPY_HW_USRSW_PIN (pin_B11)

@ -17,7 +17,6 @@
#define MICROPY_HW_ENABLE_I2C1 (1)
#define MICROPY_HW_ENABLE_SPI1 (1)
#define MICROPY_HW_ENABLE_SPI3 (0)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW has no pullup or pulldown, and pressing the switch makes the input go low
#define MICROPY_HW_USRSW_PIN (pin_B3)

@ -16,7 +16,6 @@
#define MICROPY_HW_ENABLE_I2C1 (1)
#define MICROPY_HW_ENABLE_SPI1 (1)
#define MICROPY_HW_ENABLE_SPI3 (0)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW has no pullup or pulldown, and pressing the switch makes the input go low
#define MICROPY_HW_USRSW_PIN (pin_A13)

@ -16,7 +16,6 @@
#define MICROPY_HW_ENABLE_I2C1 (1)
#define MICROPY_HW_ENABLE_SPI1 (1)
#define MICROPY_HW_ENABLE_SPI3 (0)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW has no pullup or pulldown, and pressing the switch makes the input go low
#define MICROPY_HW_USRSW_PIN (pin_B3)

@ -16,7 +16,6 @@
#define MICROPY_HW_ENABLE_I2C1 (1)
#define MICROPY_HW_ENABLE_SPI1 (1)
#define MICROPY_HW_ENABLE_SPI3 (0)
#define MICROPY_HW_ENABLE_CC3K (0)
// USRSW is pulled low. Pressing the button makes the input go high.
#define MICROPY_HW_USRSW_PIN (pin_A0)

@ -0,0 +1,736 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// We can't include stdio.h because it defines _types_fd_set, but we
// need to use the CC3000 version of this type.
// We can't include errno.h because CC3000 defines its own errnos.
// (And they are different to the standard ones!)
#include <std.h>
#include <string.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "stream.h"
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "spi.h"
#include "hci.h"
#include "socket.h"
#include "inet_ntop.h"
#include "inet_pton.h"
#include "ccspi.h"
#include "wlan.h"
#include "nvmem.h"
#include "netapp.h"
#include "patch_prog.h"
STATIC const mp_obj_type_t cc3k_type;
STATIC const mp_obj_type_t cc3k_socket_type;
STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol);
STATIC volatile uint32_t fd_state = 0;
STATIC volatile bool wlan_connected = false;
STATIC volatile bool ip_obtained = false;
STATIC int cc3k_get_fd_state(int fd) {
return (fd_state & (1<<fd));
}
STATIC void cc3k_clear_fd_state(int fd) {
// reset socket state
fd_state &= ~(1<<fd);
}
STATIC void cc3k_callback(long event_type, char *data, unsigned char length) {
switch (event_type) {
case HCI_EVNT_WLAN_UNSOL_CONNECT:
wlan_connected = true;
break;
case HCI_EVNT_WLAN_UNSOL_DISCONNECT:
// link down
wlan_connected = false;
ip_obtained = false;
break;
case HCI_EVNT_WLAN_UNSOL_DHCP:
ip_obtained = true;
break;
case HCI_EVNT_BSD_TCP_CLOSE_WAIT:
// mark socket for closure
fd_state |= (1<<((uint8_t)data[0]));
break;
}
}
/******************************************************************************/
// Micro Python bindings; CC3k class
typedef struct _cc3k_obj_t {
mp_obj_base_t base;
} cc3k_obj_t;
/// \classmethod \constructor(spi, pin_cs, pin_en, pin_irq)
/// Initialise the CC3000 using the given SPI bus and pins and return a CC3k object.
//
// Note: pins were originally hard-coded to:
// PYBv1.0: init(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
// [SPI on Y position; Y6=B13=SCK, Y7=B14=MISO, Y8=B15=MOSI]
//
// STM32F4DISC: init(pyb.SPI(2), pyb.Pin.cpu.A15, pyb.Pin.cpu.B10, pyb.Pin.cpu.B11)
STATIC mp_obj_t cc3k_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 4, 4, false);
// set the pins to use
SpiInit(
spi_get_handle(args[0]),
pin_find(args[1]),
pin_find(args[2]),
pin_find(args[3])
);
// initialize and start the module
wlan_init(cc3k_callback, NULL, NULL, NULL,
ReadWlanInterruptPin, SpiResumeSpi, SpiPauseSpi, WriteWlanPin);
if (wlan_start(0) != 0) {
nlr_raise(mp_obj_new_exception_msg(
&mp_type_OSError, "Failed to init wlan module"));
}
// set connection policy. this should be called explicitly by the user
// wlan_ioctl_set_connection_policy(0, 0, 0);
// Mask out all non-required events from the CC3000
wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|
HCI_EVNT_WLAN_UNSOL_INIT|
HCI_EVNT_WLAN_ASYNC_PING_REPORT|
HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE);
cc3k_obj_t *cc3k = m_new_obj(cc3k_obj_t);
cc3k->base.type = &cc3k_type;
return cc3k;
}
STATIC mp_obj_t cc3k_connect(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
int ssid_len =0;
const char *ssid = NULL;
const char *bssid = NULL;
int key_len =0;
int sec = WLAN_SEC_UNSEC;
const char *key = NULL;
mp_map_elem_t *kw_key, *kw_sec, *kw_bssid;
ssid = mp_obj_str_get_str(args[1]);
ssid_len = strlen(ssid);
// get KW args
kw_key = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(qstr_from_str("key")), MP_MAP_LOOKUP);
kw_sec = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(qstr_from_str("sec")), MP_MAP_LOOKUP);
kw_bssid = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(qstr_from_str("bssid")), MP_MAP_LOOKUP);
// get key and sec
if (kw_key && kw_sec) {
key = mp_obj_str_get_str(kw_key->value);
key_len = strlen(key);
sec = mp_obj_get_int(kw_sec->value);
if (!(WLAN_SEC_UNSEC < sec && sec <= WLAN_SEC_WPA2)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid security mode"));
}
}
// get bssid
if (kw_bssid != NULL) {
bssid = mp_obj_str_get_str(kw_bssid->value);
}
// connect to AP
if (wlan_connect(sec, (char*) ssid, ssid_len, (uint8_t*)bssid, (uint8_t*)key, key_len) != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "could not connect to ssid=%s, sec=%d, key=%s\n", ssid, sec, key));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_connect_obj, 2, cc3k_connect);
STATIC mp_obj_t cc3k_disconnect(mp_obj_t self_in) {
int ret = wlan_disconnect();
return mp_obj_new_int(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_disconnect_obj, cc3k_disconnect);
STATIC mp_obj_t cc3k_is_connected(mp_obj_t self_in) {
if (wlan_connected && ip_obtained) {
return mp_const_true;
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_is_connected_obj, cc3k_is_connected);
STATIC mp_obj_t cc3k_ifconfig(mp_obj_t self_in) {
tNetappIpconfigRetArgs ipconfig={{0}};
uint8_t *ip = &ipconfig.aucIP[0];
uint8_t *mask= &ipconfig.aucSubnetMask[0];
uint8_t *gw= &ipconfig.aucDefaultGateway[0];
uint8_t *dhcp= &ipconfig.aucDHCPServer[0];
uint8_t *dns= &ipconfig.aucDNSServer[0];
uint8_t *mac= &ipconfig.uaMacAddr[0];
uint8_t *ssid= &ipconfig.uaSSID[0];
netapp_ipconfig(&ipconfig);
printf ("IP:%d.%d.%d.%d\n" \
"Mask:%d.%d.%d.%d\n"\
"GW:%d.%d.%d.%d\n" \
"DHCP:%d.%d.%d.%d\n"\
"DNS:%d.%d.%d.%d\n" \
"MAC:%02X:%02X:%02X:%02X:%02X:%02X\n"\
"SSID: %s\n",
ip[3], ip[2], ip[1], ip[0],
mask[3], mask[2], mask[1], mask[0],
gw[3], gw[2], gw[1], gw[0],
dhcp[3], dhcp[2], dhcp[1], dhcp[0],
dns[3], dns[2], dns[1], dns[0],
mac[5], mac[4], mac[3], mac[2], mac[1], mac[0], ssid);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_ifconfig_obj, cc3k_ifconfig);
STATIC mp_obj_t cc3k_patch_version(mp_obj_t self_in) {
uint8_t pver[2];
mp_obj_tuple_t *t_pver;
nvmem_read_sp_version(pver);
t_pver = mp_obj_new_tuple(2, NULL);
t_pver->items[0] = mp_obj_new_int(pver[0]);
t_pver->items[1] = mp_obj_new_int(pver[1]);
return t_pver;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_version_obj, cc3k_patch_version);
STATIC mp_obj_t cc3k_patch_program(mp_obj_t self_in) {
//patch_prog_start();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_program_obj, cc3k_patch_program);
/// \method socket(family=AF_INET, type=SOCK_STREAM, fileno=-1)
/// Create a socket.
STATIC const mp_arg_t cc3k_socket_args[] = {
{ MP_QSTR_family, MP_ARG_INT, {.u_int = AF_INET} },
{ MP_QSTR_type, MP_ARG_INT, {.u_int = SOCK_STREAM} },
};
#define PYB_CC3K_SOCKET_NUM_ARGS MP_ARRAY_SIZE(cc3k_socket_args)
STATIC mp_obj_t cc3k_socket(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_CC3K_SOCKET_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_CC3K_SOCKET_NUM_ARGS, cc3k_socket_args, vals);
return cc3k_socket_new(vals[0].u_int, vals[1].u_int, 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_socket_obj, 1, cc3k_socket);
STATIC mp_obj_t cc3k_gethostbyname(mp_obj_t self_in, mp_obj_t hostname) {
mp_uint_t len;
const char *host = mp_obj_str_get_data(hostname, &len);
uint32_t ip;
if (gethostbyname((char*)host, len, &ip) < 0) {
// TODO raise appropriate exception
printf("gethostbyname failed\n");
return mp_const_none;
}
if (ip == 0) {
// unknown host
// TODO CPython raises: socket.gaierror: [Errno -2] Name or service not known
printf("Name or service not known\n");
return mp_const_none;
}
// turn the ip address into a string (could use inet_ntop, but this here is much more efficient)
VSTR_FIXED(ip_str, 16);
vstr_printf(&ip_str, "%u.%u.%u.%u", (ip >> 24) & 0xff, (ip >> 16) & 0xff, (ip >> 8) & 0xff, ip & 0xff);
mp_obj_t ret = mp_obj_new_str(ip_str.buf, ip_str.len, false);
return ret;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_gethostbyname_obj, cc3k_gethostbyname);
STATIC const mp_map_elem_t cc3k_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&cc3k_disconnect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_is_connected), (mp_obj_t)&cc3k_is_connected_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&cc3k_ifconfig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_version), (mp_obj_t)&cc3k_patch_version_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_program), (mp_obj_t)&cc3k_patch_program_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_socket), (mp_obj_t)&cc3k_socket_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_gethostbyname), (mp_obj_t)&cc3k_gethostbyname_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WEP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA2), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA2) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET), MP_OBJ_NEW_SMALL_INT(AF_INET) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET6), MP_OBJ_NEW_SMALL_INT(AF_INET6) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_STREAM), MP_OBJ_NEW_SMALL_INT(SOCK_STREAM) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_DGRAM), MP_OBJ_NEW_SMALL_INT(SOCK_DGRAM) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_RAW), MP_OBJ_NEW_SMALL_INT(SOCK_RAW) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_IP), MP_OBJ_NEW_SMALL_INT(IPPROTO_IP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_ICMP), MP_OBJ_NEW_SMALL_INT(IPPROTO_ICMP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_IPV4), MP_OBJ_NEW_SMALL_INT(IPPROTO_IPV4) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_TCP), MP_OBJ_NEW_SMALL_INT(IPPROTO_TCP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_UDP), MP_OBJ_NEW_SMALL_INT(IPPROTO_UDP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_IPV6), MP_OBJ_NEW_SMALL_INT(IPPROTO_IPV6) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IPPROTO_RAW), MP_OBJ_NEW_SMALL_INT(IPPROTO_RAW) },
};
STATIC MP_DEFINE_CONST_DICT(cc3k_locals_dict, cc3k_locals_dict_table);
STATIC const mp_obj_type_t cc3k_type = {
{ &mp_type_type },
.name = MP_QSTR_CC3k,
//.print = cc3k_print,
.make_new = cc3k_make_new,
.locals_dict = (mp_obj_t)&cc3k_locals_dict,
};
/******************************************************************************/
// Micro Python bindings; CC3k socket class
#define EPIPE (32)
//#define MAX_FD (8)
#define MAX_ADDRSTRLEN (128)
#define MAX_RX_PACKET (CC3000_RX_BUFFER_SIZE-CC3000_MINIMAL_RX_SIZE-1)
#define MAX_TX_PACKET (CC3000_TX_BUFFER_SIZE-CC3000_MINIMAL_TX_SIZE-1)
typedef struct _cc3k_socket_obj_t {
mp_obj_base_t base;
int fd;
} cc3k_socket_obj_t;
STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol) {
// create socket object
cc3k_socket_obj_t *s = m_new_obj_with_finaliser(cc3k_socket_obj_t);
s->base.type = (mp_obj_t)&cc3k_socket_type;
// open socket
s->fd = socket(family, type, protocol);
if (s->fd < 0) {
m_del_obj(cc3k_socket_obj_t, s);
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "socket failed"));
}
// clear socket state
cc3k_clear_fd_state(s->fd);
return s;
}
STATIC void cc3k_socket_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
cc3k_socket_obj_t *self = self_in;
printf("<CC3k.socket fd=%d>", self->fd);
}
STATIC mp_uint_t cc3k_socket_send(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) {
cc3k_socket_obj_t *self = self_in;
if (cc3k_get_fd_state(self->fd)) {
closesocket(self->fd);
*errcode = EPIPE;
return 0;
}
// CC3K does not handle fragmentation, and will overflow,
// split the packet into smaller ones and send them out.
int bytes = 0;
while (bytes < size) {
int n = MIN((size-bytes), MAX_TX_PACKET);
n = send(self->fd, buf+bytes, n, 0);
if (n <= 0) {
bytes = n;
*errcode = errno;
break;
}
bytes += n;
}
return bytes;
}
STATIC mp_uint_t cc3k_socket_recv(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) {
cc3k_socket_obj_t *self = self_in;
if (cc3k_get_fd_state(self->fd)) {
closesocket(self->fd);
return 0;
}
// recv MAX_RX_PACKET
int bytes = 0;
while (bytes < size) {
int n = MIN((size-bytes), MAX_RX_PACKET);
n = recv(self->fd, buf+bytes, n, 0);
if (n == 0) {
break;
} else if (n < 0) {
bytes = n;
*errcode = errno;
break;
}
bytes += n;
}
return bytes;
}
STATIC mp_obj_t cc3k_socket_bind(mp_obj_t self_in, mp_obj_t addr_obj) {
cc3k_socket_obj_t *self = self_in;
mp_obj_t *addr;
mp_obj_get_array_fixed_n(addr_obj, 2, &addr);
// fill sockaddr struct
int port = mp_obj_get_int(addr[1]);
sockaddr_in addr_in = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr.s_addr = 0,// INADDR_ANY
.sin_zero = {0}
};
const char *host = mp_obj_str_get_str(addr[0]);
if (strlen(host) && !inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
// bind socket
if (bind(self->fd, (sockaddr*) &addr_in, sizeof(sockaddr_in)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "bind failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_bind_obj, cc3k_socket_bind);
STATIC mp_obj_t cc3k_socket_listen(mp_obj_t self_in, mp_obj_t backlog) {
cc3k_socket_obj_t *self = self_in;
if (listen(self->fd, mp_obj_get_int(backlog)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "listen failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_listen_obj, cc3k_socket_listen);
STATIC mp_obj_t cc3k_socket_accept(mp_obj_t self_in) {
cc3k_socket_obj_t *self = self_in;
int fd;
sockaddr addr;
socklen_t addr_len = sizeof(sockaddr);
// accept incoming connection
if ((fd = accept(self->fd, &addr, &addr_len)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "accept failed"));
}
// clear socket state
cc3k_clear_fd_state(fd);
// create new socket object
cc3k_socket_obj_t *socket_obj = m_new_obj_with_finaliser(cc3k_socket_obj_t);
socket_obj->base.type = (mp_obj_t)&cc3k_socket_type;
socket_obj->fd = fd;
char buf[MAX_ADDRSTRLEN]={0};
if (inet_ntop(addr.sa_family,
&(((sockaddr_in*)&addr)->sin_addr), buf, MAX_ADDRSTRLEN) == NULL) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
mp_obj_tuple_t *cli = mp_obj_new_tuple(2, NULL);
mp_obj_tuple_t *cli_addr = mp_obj_new_tuple(2, NULL);
cli->items[0] = socket_obj;
cli->items[1] = cli_addr;
cli_addr->items[0] = mp_obj_new_str(buf, strlen(buf), false);
cli_addr->items[1] = mp_obj_new_int(((sockaddr_in*)&addr)->sin_port);
return cli;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_accept_obj, cc3k_socket_accept);
STATIC mp_obj_t cc3k_socket_connect(mp_obj_t self_in, mp_obj_t addr_obj) {
cc3k_socket_obj_t *self = self_in;
mp_obj_t *addr;
mp_obj_get_array_fixed_n(addr_obj, 2, &addr);
// fill sockaddr struct
int port = mp_obj_get_int(addr[1]);
sockaddr_in addr_in = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr.s_addr = 0, // to be filled below using inet_pton
.sin_zero = {0}
};
const char *host = mp_obj_str_get_str(addr[0]);
if (!inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
//printf("doing connect: fd=%d, sockaddr=(%d, %d, %lu)\n", self->fd, addr_in.sin_family, addr_in.sin_port, addr_in.sin_addr.s_addr);
int ret = connect(self->fd, (sockaddr*)&addr_in, sizeof(sockaddr_in));
if (ret != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "[Errno %d] connect failed", ret));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_connect_obj, cc3k_socket_connect);
STATIC mp_obj_t cc3k_socket_settimeout(mp_obj_t self_in, mp_obj_t timeout) {
cc3k_socket_obj_t *self = self_in;
int optval = mp_obj_get_int(timeout);
socklen_t optlen = sizeof(optval);
if (setsockopt(self->fd, SOL_SOCKET, SOCKOPT_RECV_TIMEOUT, &optval, optlen) != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_settimeout_obj, cc3k_socket_settimeout);
STATIC mp_obj_t cc3k_socket_setblocking(mp_obj_t self_in, mp_obj_t blocking) {
cc3k_socket_obj_t *self = self_in;
int optval;
socklen_t optlen = sizeof(optval);
if (mp_obj_get_int(blocking)) {
optval = SOCK_OFF; // Enable non-blocking
} else {
optval = SOCK_ON;
}
if (setsockopt(self->fd, SOL_SOCKET, SOCKOPT_RECV_NONBLOCK, &optval, optlen) != 0 ||
setsockopt(self->fd, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen) != 0 ) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_setblocking_obj, cc3k_socket_setblocking);
STATIC mp_obj_t cc3k_socket_close(mp_obj_t self_in) {
cc3k_socket_obj_t *self = self_in;
closesocket(self->fd);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_close_obj, cc3k_socket_close);
STATIC const mp_map_elem_t cc3k_socket_locals_dict_table[] = {
// TODO read/write/send/recv distinctions
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&mp_stream_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&mp_stream_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bind), (mp_obj_t)&cc3k_socket_bind_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_listen), (mp_obj_t)&cc3k_socket_listen_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_accept), (mp_obj_t)&cc3k_socket_accept_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_socket_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_settimeout), (mp_obj_t)&cc3k_socket_settimeout_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_setblocking), (mp_obj_t)&cc3k_socket_setblocking_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&cc3k_socket_close_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&cc3k_socket_close_obj },
};
STATIC MP_DEFINE_CONST_DICT(cc3k_socket_locals_dict, cc3k_socket_locals_dict_table);
STATIC const mp_stream_p_t cc3k_socket_stream_p = {
.read = cc3k_socket_recv,
.write = cc3k_socket_send,
};
STATIC const mp_obj_type_t cc3k_socket_type = {
{ &mp_type_type },
.name = MP_QSTR_socket,
.print = cc3k_socket_print,
.getiter = NULL,
.iternext = NULL,
.stream_p = &cc3k_socket_stream_p,
.locals_dict = (mp_obj_t)&cc3k_socket_locals_dict,
};
// the following code is for select, which is yet to be implemented
#if 0
#define MP_ASSERT_TYPE(obj, type) \
do { \
__typeof__ (obj) _a = (obj); \
__typeof__ (type) _b = (type); \
if (!MP_OBJ_IS_TYPE(_a, _b)) { \
nlr_jump(mp_obj_new_exception_msg_varg( \
&mp_type_TypeError, \
"can't convert %s to %s", \
mp_obj_get_type_str(_a), \
_b->name)); \
} \
} while(0)
// select helper functions
STATIC void set_fds(int *nfds, mp_obj_t *fdlist, mp_uint_t fdlist_len, fd_set *fdset) {
// clear fd set
FD_ZERO(fdset);
// add sockets to fd set
for (int i=0; i<fdlist_len; i++) {
socket_t *s = fdlist[i];
// check arg type
MP_ASSERT_TYPE(s, &cc3k_socket_type);
// add to fd set
FD_SET(s->fd, fdset);
if (s->fd > (*nfds)) {
*nfds = s->fd;
}
}
}
STATIC void get_fds(mp_obj_t *fdlist, mp_uint_t fdlist_len, mp_obj_t *fdlist_out, fd_set *fdset) {
for (int i=0; i<fdlist_len; i++) {
socket_t *s = fdlist[i];
if (FD_ISSET(s->fd, fdset)) {
socket_t *socket_obj = m_new_obj_with_finaliser(socket_t);
socket_obj->base.type = (mp_obj_t)&socket_type;
socket_obj->fd = s->fd;
mp_obj_list_append(fdlist_out, socket_obj);
}
}
}
STATIC mp_obj_t cc3k_select(mp_uint_t n_args, const mp_obj_t *args) {
int nfds=0; //highest-numbered fd plus 1
timeval tv={0};
fd_set rfds, wfds, xfds;
mp_obj_t *rlist, *wlist, *xlist;
mp_uint_t rlist_len, wlist_len, xlist_len;
// read args
mp_obj_get_array(args[0], &rlist_len, &rlist);
mp_obj_get_array(args[1], &wlist_len, &wlist);
mp_obj_get_array(args[2], &xlist_len, &xlist);
if (n_args == 4) {
float timeout = mp_obj_get_float(args[3]);
tv.tv_sec = (int)timeout;
tv.tv_usec = (timeout-(int)timeout)*1000*1000;
}
// add fds to their respective sets
set_fds(&nfds, rlist, rlist_len, &rfds);
set_fds(&nfds, wlist, wlist_len, &wfds);
set_fds(&nfds, xlist, xlist_len, &xfds);
// call select
nfds = select(nfds+1, &rfds, &wfds, &xfds, &tv);
// if any of the read sockets is closed, we add it to the read fd set,
// a subsequent call to recv() returns 0. This behavior is consistent with BSD.
for (int i=0; i<rlist_len; i++) {
socket_t *s = rlist[i];
if (cc3k_get_fd_state(s->fd)) {
FD_SET(s->fd, &rfds);
nfds = (nfds > s->fd)? nfds:s->fd;
}
}
// return value; a tuple of 3 lists
mp_obj_t fds[3] = {
mp_obj_new_list(0, NULL),
mp_obj_new_list(0, NULL),
mp_obj_new_list(0, NULL)
};
// On success, select() returns the number of file descriptors contained
// in the three returned descriptor sets which may be zero if the timeout
// expires before anything interesting happens, -1 is returned on error.
if (nfds == -1) { // select failed
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "select failed"));
} else if (nfds) { // an fd is ready
get_fds(rlist, rlist_len, fds[0], &rfds);
get_fds(wlist, wlist_len, fds[1], &wfds);
get_fds(xlist, xlist_len, fds[2], &xfds);
} // select timedout
return mp_obj_new_tuple(3, fds);
}
#endif
/******************************************************************************/
// Micro Python bindings; CC3k module
STATIC const mp_map_elem_t mp_module_cc3k_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_cc3k) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CC3k), (mp_obj_t)&cc3k_type },
};
STATIC const mp_obj_dict_t mp_module_cc3k_globals = {
.base = {&mp_type_dict},
.map = {
.all_keys_are_qstrs = 1,
.table_is_fixed_array = 1,
.used = MP_ARRAY_SIZE(mp_module_cc3k_globals_table),
.alloc = MP_ARRAY_SIZE(mp_module_cc3k_globals_table),
.table = (mp_map_elem_t*)mp_module_cc3k_globals_table,
},
};
const mp_obj_module_t mp_module_cc3k = {
.base = { &mp_type_module },
.name = MP_QSTR_cc3k,
.globals = (mp_obj_dict_t*)&mp_module_cc3k_globals,
};

@ -85,6 +85,13 @@ extern const struct _mp_obj_module_t mp_module_wiznet5k;
#define MICROPY_PY_WIZNET5K_DEF
#endif
#if MICROPY_PY_CC3K
extern const struct _mp_obj_module_t mp_module_cc3k;
#define MICROPY_PY_CC3K_DEF { MP_OBJ_NEW_QSTR(MP_QSTR_cc3k), (mp_obj_t)&mp_module_cc3k },
#else
#define MICROPY_PY_CC3K_DEF
#endif
#define MICROPY_PORT_BUILTIN_MODULES \
{ MP_OBJ_NEW_QSTR(MP_QSTR_os), (mp_obj_t)&os_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_pyb), (mp_obj_t)&pyb_module }, \
@ -92,6 +99,7 @@ extern const struct _mp_obj_module_t mp_module_wiznet5k;
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&time_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_select), (mp_obj_t)&mp_module_select }, \
MICROPY_PY_WIZNET5K_DEF \
MICROPY_PY_CC3K_DEF \
// extra constants
#define MICROPY_PORT_CONSTANTS \

@ -2,3 +2,6 @@
# wiznet5k module for ethernet support
MICROPY_PY_WIZNET5K ?= 0
# cc3k module for wifi support
MICROPY_PY_CC3K ?= 0

@ -319,7 +319,7 @@ Q(text)
Q(show)
// for WIZnet5k class
#if MICROPY_HW_ENABLE_WIZNET5K
#if MICROPY_PY_WIZNET5K
Q(wiznet5k)
Q(WIZnet5k)
Q(regs)
@ -344,6 +344,47 @@ Q(SOCK_STREAM)
Q(SOCK_DGRAM)
#endif
// for CC3k class
#if MICROPY_PY_CC3K
Q(cc3k)
Q(CC3k)
Q(connect)
Q(disconnect)
Q(is_connected)
Q(ifconfig)
Q(patch_version)
Q(patch_program)
Q(socket)
Q(family)
Q(type)
Q(gethostbyname)
Q(WEP)
Q(WPA)
Q(WPA2)
Q(AF_INET)
Q(AF_INET6)
Q(SOCK_STREAM)
Q(SOCK_DGRAM)
Q(SOCK_RAW)
Q(IPPROTO_IP)
Q(IPPROTO_ICMP)
Q(IPPROTO_IPV4)
Q(IPPROTO_TCP)
Q(IPPROTO_UDP)
Q(IPPROTO_IPV6)
Q(IPPROTO_RAW)
Q(send)
Q(recv)
Q(bind)
Q(listen)
Q(accept)
Q(connect)
Q(settimeout)
Q(setblocking)
Q(close)
Q(__del__)
#endif
// for stm module
Q(stm)
Q(mem)

@ -190,6 +190,14 @@ STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
};
#define PYB_NUM_SPI MP_ARRAY_SIZE(pyb_spi_obj)
SPI_HandleTypeDef *spi_get_handle(mp_obj_t o) {
if (!MP_OBJ_IS_TYPE(o, &pyb_spi_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "expecting an SPI object"));
}
pyb_spi_obj_t *self = o;
return self->spi;
}
STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = self_in;

@ -31,3 +31,4 @@ extern const mp_obj_type_t pyb_spi_type;
void spi_init0(void);
void spi_init(SPI_HandleTypeDef *spi);
SPI_HandleTypeDef *spi_get_handle(mp_obj_t o);

Loading…
Cancel
Save