Merge pull request #2211 from hierophect/stm32-uart

STM32: UART support
crypto-aes
Dan Halbert 3 years ago committed by GitHub
commit 356aa2ea28
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      ports/stm32f4/boards/feather_stm32f405_express/stm32f4xx_hal_conf.h
  2. 1
      ports/stm32f4/boards/stm32f412zg_discovery/mpconfigboard.mk
  3. 4
      ports/stm32f4/boards/stm32f412zg_discovery/pins.c
  4. 531
      ports/stm32f4/common-hal/busio/UART.c
  5. 28
      ports/stm32f4/common-hal/busio/UART.h
  6. 3
      ports/stm32f4/mpconfigport.h
  7. 31
      ports/stm32f4/peripherals/stm32f4/periph.h
  8. 34
      ports/stm32f4/peripherals/stm32f4/stm32f405xx/periph.c
  9. 9
      ports/stm32f4/peripherals/stm32f4/stm32f405xx/periph.h
  10. 24
      ports/stm32f4/peripherals/stm32f4/stm32f411xe/periph.c
  11. 12
      ports/stm32f4/peripherals/stm32f4/stm32f411xe/periph.h
  12. 34
      ports/stm32f4/peripherals/stm32f4/stm32f412zx/periph.c
  13. 12
      ports/stm32f4/peripherals/stm32f4/stm32f412zx/periph.h
  14. 14
      ports/stm32f4/supervisor/port.c
  15. 5
      ports/stm32f4/tick.c

@ -63,7 +63,7 @@
#define HAL_SPI_MODULE_ENABLED
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
/* #define HAL_USART_MODULE_ENABLED */
#define HAL_USART_MODULE_ENABLED
/* #define HAL_IRDA_MODULE_ENABLED */
/* #define HAL_SMARTCARD_MODULE_ENABLED */
/* #define HAL_WWDG_MODULE_ENABLED */

@ -2,6 +2,7 @@ USB_VID = 0x239A
USB_PID = 0x8056
USB_PRODUCT = "STM32F412ZG Discovery Board - CPy"
USB_MANUFACTURER = "STMicroelectronics"
USB_DEVICES = "CDC,MSC,HID"
INTERNAL_FLASH_FILESYSTEM = 1
LONGINT_IMPL = NONE

@ -74,8 +74,8 @@ STATIC const mp_rom_map_elem_t board_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_D4), MP_ROM_PTR(&pin_PG12) },
{ MP_ROM_QSTR(MP_QSTR_D3), MP_ROM_PTR(&pin_PF04) },
{ MP_ROM_QSTR(MP_QSTR_D2), MP_ROM_PTR(&pin_PG13) },
{ MP_ROM_QSTR(MP_QSTR_D1), MP_ROM_PTR(&pin_PG14) },
{ MP_ROM_QSTR(MP_QSTR_D0), MP_ROM_PTR(&pin_PG09) },
{ MP_ROM_QSTR(MP_QSTR_D1), MP_ROM_PTR(&pin_PG14) }, //USART6 TX
{ MP_ROM_QSTR(MP_QSTR_D0), MP_ROM_PTR(&pin_PG09) }, //USART6 RX
{ MP_ROM_QSTR(MP_QSTR_A0), MP_ROM_PTR(&pin_PA01) },
{ MP_ROM_QSTR(MP_QSTR_A1), MP_ROM_PTR(&pin_PC01) },
{ MP_ROM_QSTR(MP_QSTR_A2), MP_ROM_PTR(&pin_PC03) },

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -36,45 +36,554 @@
#include "supervisor/shared/translate.h"
#include "tick.h"
#include "stm32f4xx_hal.h"
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
#define ALL_UARTS 0xFFFF
STATIC bool reserved_uart[MAX_UART];
int errflag; //Used to restart read halts
STATIC void uart_clock_enable(uint16_t mask);
STATIC void uart_clock_disable(uint16_t mask);
STATIC void uart_assign_irq(busio_uart_obj_t* self, USART_TypeDef* USARTx);
void uart_reset(void) {
for (uint8_t i = 0; i < MAX_UART; i++) {
reserved_uart[i] = false;
MP_STATE_PORT(cpy_uart_obj_all)[i] = NULL;
}
uart_clock_disable(ALL_UARTS);
}
STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t* self, bool pin_eval,
int uart_index, bool uart_taken) {
if (pin_eval) {
//assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[uart_index] = self;
return mcu_uart_banks[uart_index];
} else {
if (uart_taken) {
mp_raise_ValueError(translate("Hardware in use, try alternative pins"));
} else {
mp_raise_ValueError(translate("Invalid UART pin selection"));
}
}
}
void common_hal_busio_uart_construct(busio_uart_obj_t* self,
const mcu_pin_obj_t* tx, const mcu_pin_obj_t* rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
uint16_t receiver_buffer_size) {
mp_raise_NotImplementedError(translate("UART not yet supported"));
//match pins to UART objects
USART_TypeDef * USARTx;
uint8_t tx_len = sizeof(mcu_uart_tx_list)/sizeof(*mcu_uart_tx_list);
uint8_t rx_len = sizeof(mcu_uart_rx_list)/sizeof(*mcu_uart_rx_list);
bool uart_taken = false;
uint8_t uart_index = 0; //origin 0 corrected
//Can have both pins, or either
if ((tx != mp_const_none) && (rx != mp_const_none)) {
//normal find loop if both pins exist
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//rx
for (uint j = 0; j < rx_len; j++) {
if (mcu_uart_rx_list[j].pin == rx
&& mcu_uart_rx_list[j].uart_index == mcu_uart_tx_list[i].uart_index) {
//keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
//store pins if not
self->tx = &mcu_uart_tx_list[i];
self->rx = &mcu_uart_rx_list[j];
break;
}
}
}
}
uart_index = self->tx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL && self->rx != NULL),
uart_index, uart_taken);
} else if (tx == mp_const_none) {
//If there is no tx, run only rx
for (uint i = 0; i < rx_len; i++) {
if (mcu_uart_rx_list[i].pin == rx) {
//keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_rx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
//store pins if not
self->rx = &mcu_uart_rx_list[i];
break;
}
}
uart_index = self->rx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->rx != NULL),
uart_index, uart_taken);
} else if (rx == mp_const_none) {
//If there is no rx, run only tx
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//keep looking if the UART is taken, edge case
if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
//store pins if not
self->tx = &mcu_uart_tx_list[i];
break;
}
}
uart_index = self->tx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL),
uart_index, uart_taken);
} else {
//both pins cannot be empty
mp_raise_ValueError(translate("Supply at least one UART pin"));
}
//Other errors
if ( receiver_buffer_size == 0 ) {
mp_raise_ValueError(translate("Invalid buffer size"));
}
if ( bits != 8 && bits != 9 ) {
mp_raise_ValueError(translate("Invalid word/bit length"));
}
if ( USARTx == NULL) { //this can only be hit if the periph file is wrong
mp_raise_ValueError(translate("Internal define error"));
}
//GPIO Init
GPIO_InitTypeDef GPIO_InitStruct = {0};
if (self->tx != NULL) {
GPIO_InitStruct.Pin = pin_mask(tx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->tx->altfn_index;
HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct);
}
if (self->rx != NULL) {
GPIO_InitStruct.Pin = pin_mask(rx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = self->rx->altfn_index;
HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct);
}
//reserve uart and enable the peripheral
reserved_uart[uart_index] = true;
uart_clock_enable(1 << (uart_index));
uart_assign_irq(self, USARTx);
self->handle.Instance = USARTx;
self->handle.Init.BaudRate = baudrate;
self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
self->handle.Init.StopBits = (stop > 1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity == PARITY_ODD) ? UART_PARITY_ODD :
(parity == PARITY_EVEN) ? UART_PARITY_EVEN :
UART_PARITY_NONE;
self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX :
(self->tx != NULL) ? UART_MODE_TX :
UART_MODE_RX;
self->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
self->handle.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&self->handle) != HAL_OK)
{
mp_raise_ValueError(translate("UART Init Error"));
}
// Init buffer for rx and claim pins
if (self->rx != NULL) {
ringbuf_alloc(&self->rbuf, receiver_buffer_size, true);
if (!self->rbuf.buf) {
mp_raise_ValueError(translate("UART Buffer allocation error"));
}
claim_pin(rx);
}
if (self->tx != NULL) {
claim_pin(tx);
}
self->baudrate = baudrate;
self->timeout_ms = timeout * 1000;
//start the interrupt series
if ((HAL_UART_GetState(&self->handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
mp_raise_ValueError(translate("Could not start interrupt, RX busy"));
}
//start the receive interrupt chain
HAL_NVIC_DisableIRQ(self->irq); //prevent handle lock contention
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
HAL_NVIC_SetPriority(self->irq, UART_IRQPRI, UART_IRQSUB_PRI);
HAL_NVIC_EnableIRQ(self->irq);
errflag = HAL_OK;
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return 0;
return self->tx->pin == mp_const_none;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if (common_hal_busio_uart_deinited(self)) return;
reset_pin_number(self->tx->pin->port,self->tx->pin->number);
reset_pin_number(self->rx->pin->port,self->rx->pin->number);
self->tx = mp_const_none;
self->rx = mp_const_none;
gc_free(self->rbuf.buf);
self->rbuf.size = 0;
self->rbuf.iput = self->rbuf.iget = 0;
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
return 0;
if (self->rx == NULL) {
mp_raise_ValueError(translate("No RX pin"));
}
size_t rx_bytes = 0;
uint64_t start_ticks = ticks_ms;
// Wait for all bytes received or timeout, same as nrf
while ( (ringbuf_count(&self->rbuf) < len) && (ticks_ms - start_ticks < self->timeout_ms) ) {
RUN_BACKGROUND_TASKS;
//restart if it failed in the callback
if (errflag != HAL_OK) {
errflag = HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
}
// Allow user to break out of a timeout with a KeyboardInterrupt.
if ( mp_hal_is_interrupted() ) {
return 0;
}
}
// Halt reception
HAL_NVIC_DisableIRQ(self->irq);
// copy received data
rx_bytes = ringbuf_count(&self->rbuf);
rx_bytes = MIN(rx_bytes, len);
for (uint16_t i = 0; i < rx_bytes; i++) {
data[i] = ringbuf_get(&self->rbuf);
}
HAL_NVIC_EnableIRQ(self->irq);
if (rx_bytes == 0) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
return rx_bytes;
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
return 0;
if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin"));
}
bool write_err = false; //write error shouldn't disable interrupts
HAL_NVIC_DisableIRQ(self->irq);
if (HAL_UART_Transmit(&self->handle, (uint8_t*)data, len, self->timeout_ms) != HAL_OK) {
write_err = true;
}
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
HAL_NVIC_EnableIRQ(self->irq);
if (write_err) mp_raise_ValueError(translate("UART write error"));
return len;
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle)
{
for (int i = 0; i < 7; i++) {
//get context pointer and cast it as struct pointer
busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[i];
if (handle == &context->handle) {
//check if transaction is ongoing
if ((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
return;
}
ringbuf_put_n(&context->rbuf, &context->rx_char, 1);
errflag = HAL_UART_Receive_IT(handle, &context->rx_char, 1);
return;
}
}
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle)
{
if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_PE) != RESET) {
__HAL_UART_CLEAR_PEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_FE) != RESET) {
__HAL_UART_CLEAR_FEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_NE) != RESET) {
__HAL_UART_CLEAR_NEFLAG(UartHandle);
} else if (__HAL_UART_GET_FLAG(UartHandle, UART_FLAG_ORE) != RESET) {
__HAL_UART_CLEAR_OREFLAG(UartHandle);
}
//restart serial read after an error
for (int i = 0; i < 7; i++) {
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if (UartHandle == &context->handle) {
HAL_UART_Receive_IT(UartHandle, &context->rx_char, 1);
return;
}
}
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return 0;
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
//Don't reset if it's the same value
if (baudrate == self->baudrate) return;
//Otherwise de-init and set new rate
if (HAL_UART_DeInit(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART De-init error"));
}
self->handle.Init.BaudRate = baudrate;
if (HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART Re-init error"));
}
self->baudrate = baudrate;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
return 0;
return ringbuf_count(&self->rbuf);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
// Halt reception
HAL_NVIC_DisableIRQ(self->irq);
ringbuf_clear(&self->rbuf);
HAL_NVIC_EnableIRQ(self->irq);
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
return 0;
return __HAL_UART_GET_FLAG(&self->handle, UART_FLAG_TXE);
}
STATIC void call_hal_irq(int uart_num) {
//Create casted context pointer
busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[uart_num - 1];
if (context != NULL) {
HAL_NVIC_ClearPendingIRQ(context->irq);
HAL_UART_IRQHandler(&context->handle);
}
}
// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
call_hal_irq(1);
}
void USART2_IRQHandler(void) {
call_hal_irq(2);
}
void USART3_IRQHandler(void) {
call_hal_irq(3);
}
void UART4_IRQHandler(void) {
call_hal_irq(4);
}
void UART5_IRQHandler(void) {
call_hal_irq(5);
}
void USART6_IRQHandler(void) {
call_hal_irq(6);
}
STATIC void uart_clock_enable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_ENABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_ENABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_ENABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_ENABLE();
}
#endif
}
STATIC void uart_clock_disable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_DISABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_DISABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_DISABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_DISABLE();
}
#endif
}
STATIC void uart_assign_irq(busio_uart_obj_t *self, USART_TypeDef * USARTx) {
#ifdef USART1
if (USARTx == USART1) self->irq = USART1_IRQn;
#endif
#ifdef USART2
if (USARTx == USART2) self->irq = USART2_IRQn;
#endif
#ifdef USART3
if (USARTx == USART3) self->irq = USART3_IRQn;
#endif
#ifdef UART4
if (USARTx == UART4) self->irq = UART4_IRQn;
#endif
#ifdef UART5
if (USARTx == UART5) self->irq = UART5_IRQn;
#endif
#ifdef USART6
if (USARTx == USART6) self->irq = USART6_IRQn;
#endif
#ifdef UART7
if (USARTx == UART7) self->irq = UART7_IRQn;
#endif
#ifdef UART8
if (USARTx == UART8) self->irq = UART8_IRQn;
#endif
#ifdef UART9
if (USARTx == UART9) self->irq = UART9_IRQn;
#endif
#ifdef UART10
if (USARTx == UART10) self->irq = UART10_IRQn;
#endif
}

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -28,19 +28,33 @@
#define MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H
#include "common-hal/microcontroller/Pin.h"
#include "stm32f4/periph.h"
#include "stm32f4xx_hal.h"
#include "py/obj.h"
#include "py/ringbuf.h"
#ifndef UART_IRQPRI
#define UART_IRQPRI 1
#endif
#ifndef UART_IRQSUB_PRI
#define UART_IRQSUB_PRI 0
#endif
typedef struct {
mp_obj_base_t base;
uint8_t rx_pin;
uint8_t tx_pin;
uint8_t character_bits;
bool rx_error;
UART_HandleTypeDef handle;
IRQn_Type irq;
const mcu_uart_tx_obj_t *tx;
const mcu_uart_rx_obj_t *rx;
ringbuf_t rbuf;
uint8_t rx_char;
uint32_t baudrate;
uint32_t timeout_ms;
uint32_t buffer_length;
uint8_t* buffer;
} busio_uart_obj_t;
void uart_reset(void);
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H

@ -39,7 +39,10 @@
#include "py/circuitpy_mpconfig.h"
#define MAX_UART 10 //how many UART are implemented
#define MICROPY_PORT_ROOT_POINTERS \
void *cpy_uart_obj_all[MAX_UART]; \
CIRCUITPY_COMMON_ROOT_POINTERS
#endif // __INCLUDED_MPCONFIGPORT_H

@ -34,8 +34,8 @@
#include "stm32f4/pins.h"
// I2C
//TODO: these objects should be condensed into a single 'periph_pin' unless we
//find a compelling reason to store more unique data in them.
// TODO: these objects should be condensed into a single 'periph_pin' unless we
// find a compelling reason to store more unique data in them.
typedef struct {
uint8_t i2c_index:4; // Index of the I2C unit (1 to 3)
@ -65,8 +65,8 @@ typedef struct {
}
// SPI
//TODO: these objects should be condensed into a single 'periph_pin' unless we
//find a compelling reason to store more unique data in them.
// TODO: these objects should be condensed into a single 'periph_pin' unless we
// find a compelling reason to store more unique data in them.
typedef struct {
uint8_t spi_index:4; //Up to 6 SPI units
@ -99,6 +99,29 @@ typedef struct {
.pin = spi_pin, \
}
// UART
// TODO: these objects should be condensed into a single 'periph_pin' unless we
// find a compelling reason to store more unique data in them.
typedef struct {
uint8_t uart_index:4;
uint8_t altfn_index:4;
const mcu_pin_obj_t * pin;
} mcu_uart_tx_obj_t;
typedef struct {
uint8_t uart_index:4;
uint8_t altfn_index:4;
const mcu_pin_obj_t * pin;
} mcu_uart_rx_obj_t;
#define UART(index, alt, uart_pin) \
{ \
.uart_index = index, \
.altfn_index = alt, \
.pin = uart_pin, \
}
//Timers
typedef struct {
uint8_t tim_index:4;

@ -86,6 +86,39 @@ const mcu_spi_nss_obj_t mcu_spi_nss_list[6] = {
SPI(3, 6, &pin_PA15),
};
USART_TypeDef * mcu_uart_banks[MAX_UART] = {USART1, USART2, USART3, UART4, UART5, USART6};
bool mcu_uart_has_usart[MAX_UART] = {true, true, true, false, false, true};
const mcu_uart_tx_obj_t mcu_uart_tx_list[12] = {
UART(4, 8, &pin_PA00),
UART(2, 7, &pin_PA02),
UART(1, 7, &pin_PA09),
UART(1, 7, &pin_PB06),
UART(3, 7, &pin_PB10),
UART(6, 8, &pin_PC06),
UART(3, 7, &pin_PC10),
UART(4, 8, &pin_PC10),
UART(5, 8, &pin_PC12),
UART(2, 7, &pin_PD05),
UART(3, 7, &pin_PD08),
UART(6, 8, &pin_PG14),
};
const mcu_uart_rx_obj_t mcu_uart_rx_list[12] = {
UART(4, 8, &pin_PA01),
UART(2, 7, &pin_PA03),
UART(1, 7, &pin_PA10),
UART(1, 7, &pin_PB07),
UART(3, 7, &pin_PB11),
UART(6, 8, &pin_PC07),
UART(3, 7, &pin_PC11),
UART(4, 8, &pin_PC11),
UART(5, 8, &pin_PD02),
UART(2, 7, &pin_PD06),
UART(3, 7, &pin_PD09),
UART(6, 8, &pin_PG09),
};
//Timers
//TIM6 and TIM7 are basic timers that are only used by DAC, and don't have pins
TIM_TypeDef * mcu_tim_banks[14] = {TIM1, TIM2, TIM3, TIM4, TIM5, NULL, NULL, TIM8, TIM9, TIM10,
@ -159,4 +192,3 @@ const mcu_tim_pin_obj_t mcu_tim_pin_list[56] = {
// TIM(8,3,2,&pin_PI06),
// TIM(8,3,3,&pin_PI07),
};

@ -41,10 +41,17 @@ extern const mcu_spi_mosi_obj_t mcu_spi_mosi_list[6];
extern const mcu_spi_miso_obj_t mcu_spi_miso_list[6];
extern const mcu_spi_nss_obj_t mcu_spi_nss_list[6];
//UART
extern USART_TypeDef * mcu_uart_banks[MAX_UART];
extern bool mcu_uart_has_usart[MAX_UART];
extern const mcu_uart_tx_obj_t mcu_uart_tx_list[12];
extern const mcu_uart_rx_obj_t mcu_uart_rx_list[12];
//Timers
#define TIM_BANK_ARRAY_LEN 14
#define TIM_PIN_ARRAY_LEN 56
TIM_TypeDef * mcu_tim_banks[TIM_BANK_ARRAY_LEN];
const mcu_tim_pin_obj_t mcu_tim_pin_list[TIM_PIN_ARRAY_LEN];
#endif // MICROPY_INCLUDED_STM32F4_PERIPHERALS_STM32F405XX_PERIPH_H

@ -119,7 +119,28 @@ const mcu_spi_nss_obj_t mcu_spi_nss_list[12] = {
SPI(5, 6, &pin_PE11)
};
//UART, Etc
USART_TypeDef * mcu_uart_banks[MAX_UART] = {USART1, USART2, NULL, NULL, NULL, USART6};
bool mcu_uart_has_usart[MAX_UART] = {true, true, false, false, false, true};
const mcu_uart_tx_obj_t mcu_uart_tx_list[7] = {
UART(2, 7, &pin_PA02),
UART(1, 7, &pin_PA09),
UART(1, 7, &pin_PA15),
UART(6, 8, &pin_PA11),
UART(1, 7, &pin_PB06),
UART(6, 8, &pin_PC06),
UART(2, 7, &pin_PD05),
};
const mcu_uart_rx_obj_t mcu_uart_rx_list[7] = {
UART(2, 7, &pin_PA03),
UART(1, 7, &pin_PA10),
UART(6, 8, &pin_PA12),
UART(1, 7, &pin_PB03),
UART(1, 7, &pin_PB07),
UART(6, 8, &pin_PC07),
UART(2, 7, &pin_PD06),
};
//Timers
//TIM6 and TIM7 are basic timers that are only used by DAC, and don't have pins
@ -171,4 +192,3 @@ const mcu_tim_pin_obj_t mcu_tim_pin_list[44] = {
TIM(1,1,3,&pin_PE13),
TIM(1,1,4,&pin_PE14),
};

@ -41,9 +41,17 @@ extern const mcu_spi_mosi_obj_t mcu_spi_mosi_list[14];
extern const mcu_spi_miso_obj_t mcu_spi_miso_list[12];
extern const mcu_spi_nss_obj_t mcu_spi_nss_list[12];
//UART
extern USART_TypeDef * mcu_uart_banks[MAX_UART];
extern bool mcu_uart_has_usart[MAX_UART];
extern const mcu_uart_tx_obj_t mcu_uart_tx_list[7];
extern const mcu_uart_rx_obj_t mcu_uart_rx_list[7];
//Timers
#define TIM_BANK_ARRAY_LEN 14
TIM_TypeDef * mcu_tim_banks[14];
#define TIM_PIN_ARRAY_LEN 44
const mcu_tim_pin_obj_t mcu_tim_pin_list[44];
TIM_TypeDef * mcu_tim_banks[TIM_BANK_ARRAY_LEN];
const mcu_tim_pin_obj_t mcu_tim_pin_list[TIM_PIN_ARRAY_LEN];
#endif // MICROPY_INCLUDED_STM32F4_PERIPHERALS_STM32F411VE_PERIPH_H

@ -120,7 +120,39 @@ const mcu_spi_nss_obj_t mcu_spi_nss_list[12] = {
SPI(5, 6, &pin_PE11)
};
//UART, Etc
//UART
USART_TypeDef * mcu_uart_banks[MAX_UART] = {USART1, USART2, USART3, NULL, NULL, USART6};
bool mcu_uart_has_usart[MAX_UART] = {true, true, true, false, false, true};
const mcu_uart_tx_obj_t mcu_uart_tx_list[11] = {
UART(2, 7, &pin_PA02),
UART(1, 7, &pin_PA09),
UART(1, 7, &pin_PA15),
UART(6, 8, &pin_PA11),
UART(1, 7, &pin_PB06),
UART(3, 7, &pin_PB10),
UART(6, 8, &pin_PC06),
UART(3, 7, &pin_PC10),
UART(2, 7, &pin_PD05),
UART(3, 7, &pin_PD08),
UART(6, 8, &pin_PG14),
};
const mcu_uart_rx_obj_t mcu_uart_rx_list[12] = {
UART(2, 7, &pin_PA03),
UART(1, 7, &pin_PA10),
UART(6, 8, &pin_PA12),
UART(1, 7, &pin_PB03),
UART(1, 7, &pin_PB07),
UART(3, 7, &pin_PB11),
UART(3, 7, &pin_PC05),
UART(6, 8, &pin_PC07),
UART(3, 7, &pin_PC11),
UART(2, 7, &pin_PD06),
UART(3, 7, &pin_PD09),
UART(6, 8, &pin_PG09),
};
//Timers
//TIM6 and TIM7 are basic timers that are only used by DAC, and don't have pins

@ -42,9 +42,17 @@ extern const mcu_spi_mosi_obj_t mcu_spi_mosi_list[14];
extern const mcu_spi_miso_obj_t mcu_spi_miso_list[12];
extern const mcu_spi_nss_obj_t mcu_spi_nss_list[12];
//UART
extern USART_TypeDef * mcu_uart_banks[MAX_UART];
extern bool mcu_uart_has_usart[MAX_UART];
extern const mcu_uart_tx_obj_t mcu_uart_tx_list[11];
extern const mcu_uart_rx_obj_t mcu_uart_rx_list[12];
//Timers
#define TIM_BANK_ARRAY_LEN 14
TIM_TypeDef * mcu_tim_banks[14];
#define TIM_PIN_ARRAY_LEN 60
const mcu_tim_pin_obj_t mcu_tim_pin_list[60];
TIM_TypeDef * mcu_tim_banks[TIM_BANK_ARRAY_LEN];
const mcu_tim_pin_obj_t mcu_tim_pin_list[TIM_PIN_ARRAY_LEN];
#endif // MICROPY_INCLUDED_STM32F4_PERIPHERALS_STM32F411VE_PERIPH_H

@ -33,6 +33,7 @@
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/busio/I2C.h"
#include "common-hal/busio/SPI.h"
#include "common-hal/busio/UART.h"
#include "common-hal/pulseio/PWMOut.h"
#include "stm32f4/clocks.h"
@ -41,12 +42,12 @@
#include "stm32f4xx_hal.h"
safe_mode_t port_init(void) {
HAL_Init();
HAL_Init();
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
stm32f4_peripherals_clocks_init();
stm32f4_peripherals_gpio_init();
stm32f4_peripherals_clocks_init();
stm32f4_peripherals_gpio_init();
tick_init();
board_init();
@ -55,9 +56,10 @@ safe_mode_t port_init(void) {
}
void reset_port(void) {
reset_all_pins();
reset_all_pins();
i2c_reset();
spi_reset();
uart_reset();
pwmout_reset();
}
@ -66,7 +68,7 @@ void reset_to_bootloader(void) {
}
void reset_cpu(void) {
NVIC_SystemReset();
NVIC_SystemReset();
}
uint32_t *port_stack_get_limit(void) {
@ -88,7 +90,7 @@ uint32_t port_get_saved_word(void) {
}
void HardFault_Handler(void) {
reset_into_safe_mode(HARD_CRASH);
reset_into_safe_mode(HARD_CRASH);
while (true) {
asm("nop;");
}

@ -62,6 +62,11 @@ uint32_t HAL_GetTick(void) //override ST HAL
void tick_init() {
uint32_t ticks_per_ms = SystemCoreClock/ 1000;
SysTick_Config(ticks_per_ms); // interrupt is enabled
NVIC_EnableIRQ(SysTick_IRQn);
// Bump up the systick interrupt so nothing else interferes with timekeeping.
NVIC_SetPriority(SysTick_IRQn, 0);
NVIC_SetPriority(OTG_FS_IRQn, 1);
}
void tick_delay(uint32_t us) {

Loading…
Cancel
Save