|
|
|
@ -23,14 +23,16 @@
|
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
|
* THE SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "shared_dma.h"
|
|
|
|
|
|
|
|
|
|
#include "asf/sam0/drivers/system/interrupt/system_interrupt.h"
|
|
|
|
|
|
|
|
|
|
// We allocate two DMA resources for the entire lifecycle of the board (not the
|
|
|
|
|
// vm) because the general_dma resource will be shared between the REPL and SPI
|
|
|
|
|
// flash. Both uses must block each other in order to prevent conflict.
|
|
|
|
|
struct dma_resource audio_dma;
|
|
|
|
|
struct dma_resource general_dma;
|
|
|
|
|
struct dma_resource general_dma_tx;
|
|
|
|
|
struct dma_resource general_dma_rx;
|
|
|
|
|
|
|
|
|
|
void init_shared_dma(void) {
|
|
|
|
|
struct dma_resource_config config;
|
|
|
|
@ -45,10 +47,118 @@ void init_shared_dma(void) {
|
|
|
|
|
// Turn on the transfer complete interrupt so that the job_status changes to done.
|
|
|
|
|
g_chan_interrupt_flag[audio_dma.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
|
|
|
|
|
|
// Prioritize the RX channel over the TX channel because TX can cause an RX
|
|
|
|
|
// overflow.
|
|
|
|
|
dma_get_config_defaults(&config);
|
|
|
|
|
dma_allocate(&general_dma, &config);
|
|
|
|
|
config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
|
|
|
|
|
config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
|
|
|
|
|
dma_allocate(&general_dma_rx, &config);
|
|
|
|
|
g_chan_interrupt_flag[general_dma_rx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
|
|
|
|
|
|
dma_get_config_defaults(&config);
|
|
|
|
|
config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
|
|
|
|
|
config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
|
|
|
|
|
dma_allocate(&general_dma_tx, &config);
|
|
|
|
|
g_chan_interrupt_flag[general_dma_tx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
|
|
|
|
|
|
|
|
|
|
// Be sneaky and reuse the active descriptor memory.
|
|
|
|
|
audio_dma.descriptor = &descriptor_section[audio_dma.channel_id];
|
|
|
|
|
general_dma.descriptor = &descriptor_section[general_dma.channel_id];
|
|
|
|
|
general_dma_rx.descriptor = &descriptor_section[general_dma_rx.channel_id];
|
|
|
|
|
general_dma_tx.descriptor = &descriptor_section[general_dma_tx.channel_id];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static uint8_t sercom_index(Sercom* sercom) {
|
|
|
|
|
return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void dma_configure(uint8_t channel, uint8_t trigsrc) {
|
|
|
|
|
system_interrupt_enter_critical_section();
|
|
|
|
|
/** Select the DMA channel and clear software trigger */
|
|
|
|
|
DMAC->CHID.reg = DMAC_CHID_ID(channel);
|
|
|
|
|
DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
|
|
|
|
|
DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
|
|
|
|
|
DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel));
|
|
|
|
|
DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) | \
|
|
|
|
|
DMAC_CHCTRLB_TRIGSRC(trigsrc) | \
|
|
|
|
|
DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT);
|
|
|
|
|
system_interrupt_leave_critical_section();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum status_code shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) {
|
|
|
|
|
if (general_dma_tx.job_status != STATUS_OK) {
|
|
|
|
|
return general_dma_tx.job_status;
|
|
|
|
|
}
|
|
|
|
|
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2);
|
|
|
|
|
|
|
|
|
|
// Set up TX second.
|
|
|
|
|
struct dma_descriptor_config descriptor_config;
|
|
|
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
|
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
|
|
|
descriptor_config.dst_increment_enable = false;
|
|
|
|
|
descriptor_config.block_transfer_count = length;
|
|
|
|
|
descriptor_config.source_address = ((uint32_t)buffer + length);
|
|
|
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
|
|
|
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
|
|
|
|
|
|
|
|
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
|
|
|
|
|
enum status_code status = dma_start_transfer_job(&general_dma_tx);
|
|
|
|
|
if (status != STATUS_OK) {
|
|
|
|
|
return status;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Wait for the transfer to finish.
|
|
|
|
|
while (general_dma_tx.job_status == STATUS_BUSY) {}
|
|
|
|
|
|
|
|
|
|
// This transmit will cause the RX buffer overflow but we're OK with that.
|
|
|
|
|
// So, read the garbage data and clear the overflow flag.
|
|
|
|
|
sercom->SPI.DATA.reg;
|
|
|
|
|
sercom->SPI.DATA.reg;
|
|
|
|
|
sercom->SPI.STATUS.bit.BUFOVF = 1;
|
|
|
|
|
sercom->SPI.DATA.reg;
|
|
|
|
|
|
|
|
|
|
return general_dma_tx.job_status;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum status_code shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) {
|
|
|
|
|
if (general_dma_tx.job_status != STATUS_OK) {
|
|
|
|
|
return general_dma_tx.job_status;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2);
|
|
|
|
|
dma_configure(general_dma_rx.channel_id, sercom_index(sercom) * 2 + 1);
|
|
|
|
|
|
|
|
|
|
// Set up RX first.
|
|
|
|
|
struct dma_descriptor_config descriptor_config;
|
|
|
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
|
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
|
|
|
descriptor_config.src_increment_enable = false;
|
|
|
|
|
descriptor_config.block_transfer_count = length;
|
|
|
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
|
|
|
descriptor_config.source_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
|
|
|
descriptor_config.destination_address = ((uint32_t)buffer + length);
|
|
|
|
|
|
|
|
|
|
dma_descriptor_create(general_dma_rx.descriptor, &descriptor_config);
|
|
|
|
|
|
|
|
|
|
// Set up TX to retransmit the same byte over and over.
|
|
|
|
|
dma_descriptor_get_config_defaults(&descriptor_config);
|
|
|
|
|
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
|
|
|
|
|
descriptor_config.src_increment_enable = false;
|
|
|
|
|
descriptor_config.dst_increment_enable = false;
|
|
|
|
|
descriptor_config.block_transfer_count = length;
|
|
|
|
|
descriptor_config.source_address = ((uint32_t)&tx);
|
|
|
|
|
// DATA register is consistently addressed across all SERCOM modes.
|
|
|
|
|
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
|
|
|
|
|
|
|
|
|
|
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
|
|
|
|
|
|
|
|
|
|
// Start the RX job first so we don't miss the first byte. The TX job clocks
|
|
|
|
|
// the output.
|
|
|
|
|
general_dma_rx.transfered_size = 0;
|
|
|
|
|
dma_start_transfer_job(&general_dma_rx);
|
|
|
|
|
general_dma_tx.transfered_size = 0;
|
|
|
|
|
dma_start_transfer_job(&general_dma_tx);
|
|
|
|
|
|
|
|
|
|
// Wait for the transfer to finish.
|
|
|
|
|
while (general_dma_rx.job_status == STATUS_BUSY) {}
|
|
|
|
|
return general_dma_rx.job_status;
|
|
|
|
|
}
|
|
|
|
|