py: Change obsolete "///" comment formatting to normal comments.

This comment style is no longer used because the docs are written by hand,
not generated.
crypto-aes
Damien George 6 years ago
parent 71c9cfb028
commit 0102ee092b

@ -30,13 +30,7 @@
#include <math.h>
/// \module cmath - mathematical functions for complex numbers
///
/// The `cmath` module provides some basic mathematical funtions for
/// working with complex numbers.
/// \function phase(z)
/// Returns the phase of the number `z`, in the range (-pi, +pi].
// phase(z): returns the phase of the number z in the range (-pi, +pi]
STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -44,8 +38,7 @@ STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase);
/// \function polar(z)
/// Returns, as a tuple, the polar form of `z`.
// polar(z): returns the polar form of z as a tuple
STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -57,8 +50,7 @@ STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
/// \function rect(r, phi)
/// Returns the complex number with modulus `r` and phase `phi`.
// rect(r, phi): returns the complex number with modulus r and phase phi
STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
mp_float_t r = mp_obj_get_float(r_obj);
mp_float_t phi = mp_obj_get_float(phi_obj);
@ -66,8 +58,7 @@ STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
/// \function exp(z)
/// Return the exponential of `z`.
// exp(z): return the exponential of z
STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -76,8 +67,7 @@ STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
/// \function log(z)
/// Return the natural logarithm of `z`. The branch cut is along the negative real axis.
// log(z): return the natural logarithm of z, with branch cut along the negative real axis
// TODO can take second argument, being the base
STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
mp_float_t real, imag;
@ -87,8 +77,7 @@ STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
/// \function log10(z)
/// Return the base-10 logarithm of `z`. The branch cut is along the negative real axis.
// log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis
STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -97,8 +86,7 @@ STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
#endif
/// \function sqrt(z)
/// Return the square-root of `z`.
// sqrt(z): return the square-root of z
STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -108,8 +96,7 @@ STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
/// \function cos(z)
/// Return the cosine of `z`.
// cos(z): return the cosine of z
STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);
@ -117,8 +104,7 @@ STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
/// \function sin(z)
/// Return the sine of `z`.
// sin(z): return the sine of z
STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag);

@ -30,10 +30,7 @@
#if MICROPY_PY_GC && MICROPY_ENABLE_GC
/// \module gc - control the garbage collector
/// \function collect()
/// Run a garbage collection.
// collect(): run a garbage collection
STATIC mp_obj_t py_gc_collect(void) {
gc_collect();
#if MICROPY_PY_GC_COLLECT_RETVAL
@ -44,16 +41,14 @@ STATIC mp_obj_t py_gc_collect(void) {
}
MP_DEFINE_CONST_FUN_OBJ_0(gc_collect_obj, py_gc_collect);
/// \function disable()
/// Disable the garbage collector.
// disable(): disable the garbage collector
STATIC mp_obj_t gc_disable(void) {
MP_STATE_MEM(gc_auto_collect_enabled) = 0;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(gc_disable_obj, gc_disable);
/// \function enable()
/// Enable the garbage collector.
// enable(): enable the garbage collector
STATIC mp_obj_t gc_enable(void) {
MP_STATE_MEM(gc_auto_collect_enabled) = 1;
return mp_const_none;
@ -65,8 +60,7 @@ STATIC mp_obj_t gc_isenabled(void) {
}
MP_DEFINE_CONST_FUN_OBJ_0(gc_isenabled_obj, gc_isenabled);
/// \function mem_free()
/// Return the number of bytes of available heap RAM.
// mem_free(): return the number of bytes of available heap RAM
STATIC mp_obj_t gc_mem_free(void) {
gc_info_t info;
gc_info(&info);
@ -74,8 +68,7 @@ STATIC mp_obj_t gc_mem_free(void) {
}
MP_DEFINE_CONST_FUN_OBJ_0(gc_mem_free_obj, gc_mem_free);
/// \function mem_alloc()
/// Return the number of bytes of heap RAM that are allocated.
// mem_alloc(): return the number of bytes of heap RAM that are allocated
STATIC mp_obj_t gc_mem_alloc(void) {
gc_info_t info;
gc_info(&info);

@ -35,11 +35,6 @@
// And by defining our own we can ensure it uses the correct const format.
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
/// \module math - mathematical functions
///
/// The `math` module provides some basic mathematical funtions for
/// working with floating-point numbers.
STATIC NORETURN void math_error(void) {
mp_raise_ValueError("math domain error");
}
@ -75,80 +70,74 @@ STATIC NORETURN void math_error(void) {
#define log2(x) (log(x) * 1.442695040888963407354163704)
#endif
/// \function sqrt(x)
/// Returns the square root of `x`.
// sqrt(x): returns the square root of x
MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))
/// \function pow(x, y)
/// Returns `x` to the power of `y`.
// pow(x, y): returns x to the power of y
MATH_FUN_2(pow, pow)
/// \function exp(x)
// exp(x)
MATH_FUN_1(exp, exp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
/// \function expm1(x)
// expm1(x)
MATH_FUN_1(expm1, expm1)
/// \function log2(x)
// log2(x)
MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))
/// \function log10(x)
// log10(x)
MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))
/// \function cosh(x)
// cosh(x)
MATH_FUN_1(cosh, cosh)
/// \function sinh(x)
// sinh(x)
MATH_FUN_1(sinh, sinh)
/// \function tanh(x)
// tanh(x)
MATH_FUN_1(tanh, tanh)
/// \function acosh(x)
// acosh(x)
MATH_FUN_1(acosh, acosh)
/// \function asinh(x)
// asinh(x)
MATH_FUN_1(asinh, asinh)
/// \function atanh(x)
// atanh(x)
MATH_FUN_1(atanh, atanh)
#endif
/// \function cos(x)
// cos(x)
MATH_FUN_1(cos, cos)
/// \function sin(x)
// sin(x)
MATH_FUN_1(sin, sin)
/// \function tan(x)
// tan(x)
MATH_FUN_1(tan, tan)
/// \function acos(x)
// acos(x)
MATH_FUN_1(acos, acos)
/// \function asin(x)
// asin(x)
MATH_FUN_1(asin, asin)
/// \function atan(x)
// atan(x)
MATH_FUN_1(atan, atan)
/// \function atan2(y, x)
// atan2(y, x)
MATH_FUN_2(atan2, atan2)
/// \function ceil(x)
// ceil(x)
MATH_FUN_1_TO_INT(ceil, ceil)
/// \function copysign(x, y)
// copysign(x, y)
MATH_FUN_2(copysign, copysign)
/// \function fabs(x)
// fabs(x)
MATH_FUN_1(fabs, fabs)
/// \function floor(x)
// floor(x)
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
/// \function fmod(x, y)
// fmod(x, y)
MATH_FUN_2(fmod, fmod)
/// \function isfinite(x)
// isfinite(x)
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
/// \function isinf(x)
// isinf(x)
MATH_FUN_1_TO_BOOL(isinf, isinf)
/// \function isnan(x)
// isnan(x)
MATH_FUN_1_TO_BOOL(isnan, isnan)
/// \function trunc(x)
// trunc(x)
MATH_FUN_1_TO_INT(trunc, trunc)
/// \function ldexp(x, exp)
// ldexp(x, exp)
MATH_FUN_2(ldexp, ldexp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
/// \function erf(x)
/// Return the error function of `x`.
// erf(x): return the error function of x
MATH_FUN_1(erf, erf)
/// \function erfc(x)
/// Return the complementary error function of `x`.
// erfc(x): return the complementary error function of x
MATH_FUN_1(erfc, erfc)
/// \function gamma(x)
/// Return the gamma function of `x`.
// gamma(x): return the gamma function of x
MATH_FUN_1(gamma, tgamma)
/// \function lgamma(x)
/// return the natural logarithm of the gamma function of `x`.
// lgamma(x): return the natural logarithm of the gamma function of x
MATH_FUN_1(lgamma, lgamma)
#endif
//TODO: factorial, fsum
@ -178,8 +167,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
// Functions that return a tuple
/// \function frexp(x)
/// Converts a floating-point number to fractional and integral components.
// frexp(x): converts a floating-point number to fractional and integral components
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
int int_exponent = 0;
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
@ -190,7 +178,7 @@ STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
/// \function modf(x)
// modf(x)
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
mp_float_t int_part = 0.0;
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
@ -203,13 +191,13 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
// Angular conversions
/// \function radians(x)
// radians(x)
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
/// \function degrees(x)
// degrees(x)
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
}

@ -42,8 +42,6 @@
#include "genhdr/mpversion.h"
/// \module sys - system specific functions
// defined per port; type of these is irrelevant, just need pointer
extern struct _mp_dummy_t mp_sys_stdin_obj;
extern struct _mp_dummy_t mp_sys_stdout_obj;
@ -53,10 +51,10 @@ extern struct _mp_dummy_t mp_sys_stderr_obj;
const mp_print_t mp_sys_stdout_print = {&mp_sys_stdout_obj, mp_stream_write_adaptor};
#endif
/// \constant version - Python language version that this implementation conforms to, as a string
// version - Python language version that this implementation conforms to, as a string
STATIC const MP_DEFINE_STR_OBJ(version_obj, "3.4.0");
/// \constant version_info - Python language version that this implementation conforms to, as a tuple of ints
// version_info - Python language version that this implementation conforms to, as a tuple of ints
#define I(n) MP_OBJ_NEW_SMALL_INT(n)
// TODO: CPython is now at 5-element array, but save 2 els so far...
STATIC const mp_obj_tuple_t mp_sys_version_info_obj = {{&mp_type_tuple}, 3, {I(3), I(4), I(0)}};
@ -91,13 +89,11 @@ STATIC const mp_rom_obj_tuple_t mp_sys_implementation_obj = {
#undef I
#ifdef MICROPY_PY_SYS_PLATFORM
/// \constant platform - the platform that MicroPython is running on
// platform - the platform that MicroPython is running on
STATIC const MP_DEFINE_STR_OBJ(platform_obj, MICROPY_PY_SYS_PLATFORM);
#endif
/// \function exit([retval])
/// Raise a `SystemExit` exception. If an argument is given, it is the
/// value given to `SystemExit`.
// exit([retval]): raise SystemExit, with optional argument given to the exception
STATIC mp_obj_t mp_sys_exit(size_t n_args, const mp_obj_t *args) {
mp_obj_t exc;
if (n_args == 0) {
@ -163,7 +159,6 @@ STATIC const mp_rom_map_elem_t mp_module_sys_globals_table[] = {
#ifdef MICROPY_PY_SYS_PLATFORM
{ MP_ROM_QSTR(MP_QSTR_platform), MP_ROM_PTR(&platform_obj) },
#endif
/// \constant byteorder - the byte order of the system ("little" or "big")
#if MP_ENDIANNESS_LITTLE
{ MP_ROM_QSTR(MP_QSTR_byteorder), MP_ROM_QSTR(MP_QSTR_little) },
#else
@ -184,12 +179,10 @@ STATIC const mp_rom_map_elem_t mp_module_sys_globals_table[] = {
#endif
#if MICROPY_PY_SYS_EXIT
// documented per-port
{ MP_ROM_QSTR(MP_QSTR_exit), MP_ROM_PTR(&mp_sys_exit_obj) },
#endif
#if MICROPY_PY_SYS_STDFILES
// documented per-port
{ MP_ROM_QSTR(MP_QSTR_stdin), MP_ROM_PTR(&mp_sys_stdin_obj) },
{ MP_ROM_QSTR(MP_QSTR_stdout), MP_ROM_PTR(&mp_sys_stdout_obj) },
{ MP_ROM_QSTR(MP_QSTR_stderr), MP_ROM_PTR(&mp_sys_stderr_obj) },

Loading…
Cancel
Save